设齐次线性方程组其中0≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.

admin2020-02-27  34

问题 设齐次线性方程组其中0≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.

选项

答案由题设,方程组的系数矩阵为[*] 则[*] 当a∈b且a+(n-1)b≠0,即a≠(1-n)b时,方程组仅有零解. 当a=b时,对A可作初等行变换化为阶梯形[*] 则不难求得原方程组的基础解系为[*] 因此方程组的全部解是x=k1ξ1+k2ξ2+…+kn-1ξn-1,其中k1,k2,…,kn-1为任意常数. 当a=(1-n)b时,同样对A作初等行变换化为阶梯形[*] 则可得此时基础解系为ξ=[*] ,从而原方程组的全部解是kξ,其中k为任意常数.

解析
转载请注明原文地址:https://jikaoti.com/ti/ZdiRFFFM
0

最新回复(0)