首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内二次可导,且f(x)在[0,1]上的最大值M=2,最小值m=0,求证:若f(x)的最大值点或最小值点至少有一个是区间(0,1)内的点,则在(0,1)内必存在两点ξ与η,使得|f’(ξ)|>2,|f"(η)|>4成
设f(x)在[0,1]上连续,在(0,1)内二次可导,且f(x)在[0,1]上的最大值M=2,最小值m=0,求证:若f(x)的最大值点或最小值点至少有一个是区间(0,1)内的点,则在(0,1)内必存在两点ξ与η,使得|f’(ξ)|>2,|f"(η)|>4成
admin
2015-04-30
33
问题
设f(x)在[0,1]上连续,在(0,1)内二次可导,且f(x)在[0,1]上的最大值M=2,最小值m=0,求证:若f(x)的最大值点或最小值点至少有一个是区间(0,1)内的点,则在(0,1)内必存在两点ξ与η,使得|f’(ξ)|>2,|f"(η)|>4成立.
选项
答案
由题设知,存在x
1
,x
2
∈[0,1],使得f(x
1
)=M=2,f(x
2
)=m=0. 由拉格朗日中值定理知,在x
1
与x
2
之间存在一点ξ,使得 [*] 因f(x
1
)一f(x
2
)=2—0=2,又|x
2
一x
1
|<1,故 [*] 为了确定起见,我们可设f(x)在[0,1]上的最大值M在(0,1)内的点x
1
处取得,而f(x)在[0,1]上的最小值m在[0,1]上的某点x
2
≠x
1
取得.因x
1
∈(0,1),又f(x
1
)=[*]=2,故 f’(x
1
)=0. 将f(x
2
)在x=x
1
展开成一阶泰勒公式,得 f(x
2
)=f(x
1
)+f’(x
1
)(x
2
一x
1
)+[*]f"(η)(x
2
一x
1
)
2
,其中η在x
1
与x
2
之间,故η∈(0,1).将函数值f(x
2
)=0,f(x
1
)=2,f’(x
1
)=0代入上式 [*] 若m=f(x
2
)且x
2
∈(0,1),可类似证明.
解析
转载请注明原文地址:https://jikaoti.com/ti/ZcriFFFM
0
考研数学二
相关试题推荐
诗句“往来从此过,词体近风骚”中的“风骚”指《国风》和《离骚》。()
企业战略联盟是两个或两个以上的经济实体(一般指企业,如果企业问的某些部门达成联盟关系,也适用此定义)为了实现特定的战略目标而采取的共担风险、共享利益的长期联合与合作协议。根据上述定义,下列属于企业战略联盟的是()。
2005年华东六省一市,人均公共绿地面积超过全国平均值的有几个省市?()
A、 B、 C、 D、 B前面四个图形的规律是,图形上面白色和黑色图案相间,下面竖线的数量是上面图形角数减去2。所以第五个图形上面为白色图案,下面为图形角数减去2条竖线,给出图形中只有B符合规律,故选B。图形
A、 B、 C、 D、 C此图形由三个长方形组成,由此排除A、B项;此题的变化规律为第一个长方形由左往右递进,第五个图形应为第四个图形的镜像,D项应是C项的下一个图形,故选C项。
无论是现代游戏,还是传统游戏,都______出了一定的知识、社会和时代特征,同时也______了团结、多样性和包容的价值。但随着社会变迁和时代发展,很多有价值的传统游戏正在一代又一代的______中逐渐消逝。填入画横线部分最恰当的一项是:
如下图,自行车每节链的长度为2.5cm,重叠部分的圆的直径为0.8cm,如果某种型号自行车的链条(没有安装前)由60节链条组成,那么链条的总长度是()。
在标准正态分布曲线下,正、负1个标准差范围内的面积占曲线下总面积的()
设y1=ex/2+e-x+ex,y2=2e-x+ex,y3=ex/2+ex是某二阶常系数非齐次线性微分方程的解,则该方程的通解是()
设z=z(χ,y)是由χ2-6χy+10y2-2yz-z2+18=0确定的函数,求z=z(χ,y)的极值点和极值.
随机试题
设立赔偿委员会的人民法院的级别至少是
痿证的临床症状有
根据刑事诉讼法相关规定,下列有关期间说法正确的是:
依法实施强制监理的工程项目,对施工组织设计中的安全技术措施或者专项施工方案是否符合工程建设强制性标准负有审查责任的是()。
风险事件:为增强交易对手信用风险资本监管的有效性,推动商业银行提升衍生工具风险管理能力,《衍生工具交易对手违约风险资产计量规则(征求意见稿)》要求商业银行将交易对手信用风险管理纳入全面风险管理框架。相关背景:近年来,随着金融市
境内、外个人手持外币现钞汇出,当日累计等值1万美元以下(含)的,凭本人有效身份证件办理。()
SDS中反向项目的数量是()个。
美育也称审美教育或美感教育,其本质属性是()。
下列名著中,出自同一大洲的有:
法国宗教改革运动的主要派别是()。
最新回复
(
0
)