首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,g(x)连续,且f’(x)=lncosx+=一2.则( ).
设f(x)二阶连续可导,g(x)连续,且f’(x)=lncosx+=一2.则( ).
admin
2021-01-12
22
问题
设f(x)二阶连续可导,g(x)连续,且f’(x)=lncosx+
=一2.则( ).
选项
A、f(0)为f(x)的极大值
B、f(0)为f(x)的极小值
C、(0,f(0))为y=f(x)的拐点
D、f(0)不是f(x)的极值,(0,f(0))也不是y=f(x)的拐点
答案
C
解析
显然f’(0)=0,由
=一2得g(0)=0,g’(0)=一2.
由
得f’(x)=lncosx+
f"(x)=
+g(x),f"(0)=0.
f"(0)=
一1—2=一3<0,
由极限的保号性,存在δ>0,当0<|x|<δ时,
当x∈(0,δ)时,f"(x)<0;当x∈(一δ,0)时,f"(x)>0,
故(0,f(0))为y=f(x)的拐点,选(C).
转载请注明原文地址:https://jikaoti.com/ti/YnARFFFM
0
考研数学二
相关试题推荐
[*]
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向量α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
(2008年试题,21)求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值和最小值.
已知α1=[1,4,0,2]T,α2=[2,7,1,3]T,α3=[0,1,一1,a]T,β=[3,10,6,4]T,问:(1)a,b取何值时,β不能由α1,α2,α3线性表示?(2)a,b取何值时,β可由α1,α2,α3线性表示?并写出此表示式.
(06年)试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3)其中o(x3)是当x→0时比x3高阶的无穷小.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
已知A,B为三阶非零矩阵,且β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求a,b的值;
设f(x,y)=2(y-x2)2-x2-y2,(Ⅰ)求f(x,y)的驻点;(Ⅱ)求f(x,y)的全部极值点,并指明是极大值点还是极小值点.
计算定积分
请用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则△x→0时f(x)在x=x0处的微分与△x比较是__________无穷小,△y=f(x0+△x)-f(x0)与△x比较是_______无穷小,△y-df(x)|x=x0与△x比较是
随机试题
在法庭审理过程中,被告人屠某、沈某和证人朱某提出在侦查期间遭到非法取证,要求确认其审前供述或证言不具备证据能力。下列哪些情形下应当根据法律规定排除上述证据?()
《嘉陵江畔的传奇》的作者是()
TheFirstSettlementinNorthAmericaItisverydifficulttosayjustwhencolonization(殖民)began.Thefirsthundredyears
造影期间的造影像指的是
适用于G-厌氧菌感染抗结核一线药物
经审理,一审法院判决被告王某支付原告刘某欠款本息共计22万元。王某不服提起上诉。二审中,双方当事人达成和解协议,约定:王某在3个月内向刘某分期偿付20万元,刘某放弃利息请求。案件经王某申请撤回上诉而终结。约定的期限届满后,王某只支付了15万元。刘某欲寻求法
房地产转让当事人在房地产转让合同签订后()日内,持房地产权属证书、当事人的合法证明、转让合同等有关文件,向房地产所在地的房地产管理部门提出申请,并申报成交价格。
一座容纳人数为2400人的剧场,需要设置的疏散门数量为()个。
(1)发现问题(2)拿出备选方案(3)调查研究(4)确定方案(5)付诸实施,解决问题
Focusonwhatyoudobest.Thisage-oldstrategyhasworkedwellforRealNetworks,Microsoft’smaincompetitorinmultimediasof
最新回复
(
0
)