已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明: (Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ; (Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.

admin2013-10-11  55

问题 已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:
(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;
(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f(η)f(ζ)=1.

选项

答案[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/YYmRFFFM
0

相关试题推荐
最新回复(0)