首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)=(akcoskχ+bksinkχ),其中口ak,bk(k=1,2,…,n)为常数.证明:(Ⅰ)f(χ)在[0,2π)必有两个相异的零点;(Ⅱ)f(m)(χ)在[0,2π)也必有两个相异的零点.
设f(χ)=(akcoskχ+bksinkχ),其中口ak,bk(k=1,2,…,n)为常数.证明:(Ⅰ)f(χ)在[0,2π)必有两个相异的零点;(Ⅱ)f(m)(χ)在[0,2π)也必有两个相异的零点.
admin
2018-11-11
36
问题
设f(χ)=
(a
k
coskχ+b
k
sinkχ),其中口a
k
,b
k
(k=1,2,…,n)为常数.证明:(Ⅰ)f(χ)在[0,2π)必有两个相异的零点;(Ⅱ)f
(m)
(χ)在[0,2π)也必有两个相异的零点.
选项
答案
(Ⅰ)令F(χ)=[*],显然F′(χ)=f(χ)由于F(χ)是以2π为周期的可导函数,故F(χ)在[0,2π]上连续,从而必有最大值与最小值.设F(χ)分别在χ
1
,χ
2
达到最大值与最小值,且χ
1
≠χ
2
,χ
1
,χ
2
∈[0,2,π),则F(χ
1
),F(χ
2
)也是F(χ)在(-∞,+∞)上的最大值,最小值,因此χ
1
,χ
2
必是极值点.又F(χ)可导,由费马定理知F′(χ
1
)=f(χ
1
)=0,F′(χ
2
)=f(χ
2
)=0. (Ⅱ)f
(m)
(χ)同样为(Ⅰ)中类型的函数即可写成f
(m)
(χ)=[*],其中α
k
,β
k
(k=1,2,…,n)为常数,利用(Ⅰ)的结论,f
(m)
(χ)在[0,2,π)必有两个相异的零点.
解析
转载请注明原文地址:https://jikaoti.com/ti/YBWRFFFM
0
考研数学二
相关试题推荐
设f(x)在区间[a,b]上连续,且f(x)>0,则函数在(a,b)内的零点个数为()
设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系.证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
设n阶实矩阵A为反对称矩阵,即AT=一A.证明:A+E与A—E都可逆;
设a>b>c>0,证明
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在η∈(一1,1),使得f’’(η)+f’(η)=1.
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式.
设f(x)在[a,b]上有连续的导数,证明
随机试题
LatelyIhavebeennoticingthegreatnumberofelectricalappliances(电器)onthemarket.Itseemstomethatthereare【C1】______n
关于医疗用毒性药品的说法中,正确的是
A、窦房结B、心房肌C、房室交界D、心室肌E、浦肯野纤维自律性最高的是
装配式预应力混凝土水池的吊装方案应包括()。
根据《刑法》规定,下列有关逃税罪的表述中错误的是()。
张某于2008年2月份将其自有的房屋出租给李某居住,租期2年,年租金18000元。1月份张某因房屋陈旧而进行了简单维修,发生维修费用1200元(取得合法有效凭证)。除个人所得税外,暂不考虑其他税费。则张某2008年3月份应缴纳个人所得税额()元。
下列有关项目组内部讨论的说法中,错误的是()。
茶叶,任人掐、压、烘、揉、开水冲泡。却默默地忍受而从无怨尤。在火烹水煎里酿成人世永存的甘甜与清芬,释放出生命的价值。对此,请谈谈你的认识。
改革开放的目的就是要
TheearlyretirementofexperiencedworkersisseriouslyharmingtheU.S.economy,accordingtoanewreportfromtheHudsonIn
最新回复
(
0
)