首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(χ,y,z)=χ+y-z2+5在区域力:χ2+y2+z2≤2上的最大值与最小值.
求f(χ,y,z)=χ+y-z2+5在区域力:χ2+y2+z2≤2上的最大值与最小值.
admin
2022-09-14
22
问题
求f(χ,y,z)=χ+y-z
2
+5在区域力:χ
2
+y
2
+z
2
≤2上的最大值与最小值.
选项
答案
f(χ,y,z)在有界闭区域Ω上连续,一定存在最大、最小值. 第一步,先求f(χ,y,z)在Ω内的驻点. 由[*]f(χ,y,z)在Ω内无驻点,因此f(χ,y,z)在Ω的最大、最小值都只能在Ω的边界上达到. 第二步,求f(χ,y,z)在Ω的边界χ
2
+y
2
+z
2
=2上的最大、最小值, 从边界方程χ
2
+y
2
+z
2
=2解出z
2
=2-χ
2
-y
2
代入f(χ,y,z)得 f(χ,y,z)[*]=χ+y+χ
2
+y
2
+3[*]g(χ,y) 转化为求g(χ,y)在区域D:χ
2
+y
2
≤2的最大、最小值. 先求g(χ,y)在D内驻点,解方程组 [*] 相应地[*] 再看D的边界χ
2
+y
2
-2=0.还用拉格朗日乘子法,令H(χ,y,λ)=χ+y+χ
2
+y
2
+3+λ(χ
2
+y
2
-2),解方程组 [*] 由前二个方程得χ=y,代入第三个方程后得 χ=y=±1 因此得驻点(χ,y)=(1,1),(-1,1),又 g(-1,-1)=3,g(1,1)=7 因此g(χ,y)在区域D,也就是f(χ,y,z)在区域Ω的最大值为7,最小值为[*].
解析
转载请注明原文地址:https://jikaoti.com/ti/XIhRFFFM
0
考研数学二
相关试题推荐
设对任意χ>0,曲线y=f(χ)上点(χ,f(χ))处的切线在y轴上的截距等于∫0χf(t)dt,求f(χ)的一般表达式为_______.
设矩阵A满足A2+A-4E=O,其中E为单位矩阵,则(A-E)-1=______.
设z=∫0x2yf(t,et)dt,其中f是二元连续函数,则dz=_______.
设一阶非齐次线性微分方程y’+P(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=__________.
已知三维向量组α1,α2,α3线性无关,则向量组α1一α2,α2-kα3,α3一α1也线性无关的充要条件是k_________.
已知非齐次线性方程组A3×4X=b①有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是_____________
曲线y=x4(x≥0)与x轴围成的区域面积为_______.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
(2007年)设函数f(χ)在χ=0处连续,下列命题错误的是【】
下列函数中,在x=0处不可导的是().
随机试题
为达到缓释长效的目的,应选用的固体分散体载体是
某产妇,足月产后3天,出现下腹痛,体温不高,恶露多,有臭味,子宫底脐上一指,子宫体软。考虑其最可能的病理是
比例原则是侦查的基本原则之一,其含义是指侦查权在侵犯公民权利时,必须在法律规定范围内选择侵害公民权利最小的方式。下列法条中,哪一条的规定充分体现了比例原则?()
提炼推广主题,具体可以从()三个方面来寻找。
下列关于股票技术分析的特性描述不正确的是( )。
甲公司为居民企业,主要从事不锈钢用品的生产和销售业务,2016年有关经营情况如下:(1)产品销售收入800万元,销售边角料收入40万元,股权转让收入2000万元,国债利息收入5万元。经税务机关核准上年已作损失处理后又收同的其他应收款20万元。另以产品抵偿
下列各项中,可以加成征收个人所得税的是()。
内部动机的满足在活动之内,不在活动之外。()
即将结束
接入因特网的方式有多种,下面关于各种接入方式的描述中,不正确的是(22)。
最新回复
(
0
)