首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(97年)设在闭区间[a,b]上f(x)>0,f’(x)<0.f"(x)>0.记S1=∫abf(x)dx,S2=f(b)(b一a),S3=[f(a)+f(b)](b一a).则
(97年)设在闭区间[a,b]上f(x)>0,f’(x)<0.f"(x)>0.记S1=∫abf(x)dx,S2=f(b)(b一a),S3=[f(a)+f(b)](b一a).则
admin
2021-01-19
45
问题
(97年)设在闭区间[a,b]上f(x)>0,f’(x)<0.f"(x)>0.记S
1
=∫
a
b
f(x)dx,S
2
=f(b)(b一a),S
3
=
[f(a)+f(b)](b一a).则
选项
A、S
1
<S
2
<S
3
B、S
2
<S
3
<S
1
C、S
3
<S
1
<S
2
D、S
2
<S
1
<S
3
答案
D
解析
在[0.ln2]上考虑f(x)=e
-x
,显然f(x)满足原题设条件,而
则 S
2
<S
1
<S
3
转载请注明原文地址:https://jikaoti.com/ti/X3ARFFFM
0
考研数学二
相关试题推荐
在椭圆=1的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小.
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
设曲线y=ax2(a≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D.求D绕x轴旋转一周所成的旋转体的体积V(a);
设α1,…,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
设f(x)为[a,b]上的函数且满足则称f(x)为[a,b]上的凹函数,证明:(1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数.(2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
已知矩阵A=有3个线性无关的特征向量,λ=2是A的2重特征值.试求可逆矩阵P,使P-1AP成为对角矩阵.
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
设函数f(χ)在区间[0,1]上连续,并设,∫01f(χ)dχ=a,求∫01dχ∫χ1f(χ)f(y)dy.
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设f(x)在区间[0,1]上可微,且满足条件,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
随机试题
液控系统正常,闸板关不到位,此故障如何排除?
产品瑕疵责任的诉讼时效期限是【】
A.儿童B.青少年C.青壮年D.壮年人E.老年人股骨头骨骺滑脱症多见于
功用与枳实同,但作用较缓和,以行气宽中除胀为主的药物是
甲于2005年5月12日同保险公司签定了一份人寿保险合同,约定分期支付保险费,首付1000元,以后按月支付300元。甲付完首付后,自2005年8月12日开始就拖欠应交的保险费。保险公司催促后甲无动于衷,于足保险公司于2007年11月1日告知甲解除合同,甲要
工地试验室对于隐蔽工程必须收集的是()。
资本是能够带来______的价值。
Infaceof______failure,itisthemostimportanttokeepup______goodstateofmind.
创造宣言(节录)陶行知创造主未完成之工作,让我们接过来,继续创造。宗教家创造出神来供自己崇拜。省事者把别
众所周知,吸烟不仅有害我们的健康,对环境也不利。吸烟能引起许多疾病,如肺癌(lungcancer)。吸烟也会影响不吸烟的人。被动吸烟者(passivesmokers)生病的几率甚至高于吸烟者。有些年轻人认为吸烟很酷,有些人则认为吸烟能提神。如今,越来越
最新回复
(
0
)