首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈c[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0,证明: (Ⅰ)存在ξ∈(a,b),使得∫aξf(x)dx=0; (Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
设f(x)∈c[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0,证明: (Ⅰ)存在ξ∈(a,b),使得∫aξf(x)dx=0; (Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
admin
2017-02-28
29
问题
设f(x)∈c[a,b]且f(x)为单调增函数,若f(a)<0,∫
a
b
f(x)dx>0,证明:
(Ⅰ)存在ξ∈(a,b),使得∫
a
ξ
f(x)dx=0;
(Ⅱ)存在η∈(a,b),使得∫
a
η
f(x)dx=f(η).
选项
答案
(Ⅰ)由积分中值定理,∫
a
b
f(x)dx=f(c)(b一a)>0,其中c∈[a,b], 显然f(c)>0且c∈(a,b]. 因为f(a)f(c)<0,所以由零点定理,存在x
0
∈(a,c),使得f(x
0
)=0. 再由f(x)单调增加得,当x∈[a,x
0
)时,f(x)<0;当x∈(x
0
,b]时,f(x)>0. 令F(x)=∫
a
x
f(t)dt,显然F(x
0
)<0,F(b)>0,由零点定理,存在ξ∈(a,b),使得F(ξ)=0,即∫
a
ξ
f(x)dx=0. (Ⅱ)令φ(x)=e
x
∫
a
x
f(t)dt,φ(a)=φ(ξ)=0, 由罗尔定理,存在η∈(a,ξ)[*](a,b),使得φ’(η)=0, 而φ’(x)=e
—x
[f(x)一∫
a
x
f(t)dt]且e
—x
≠0,故∫
a
η
f(x)dx=f(η).
解析
转载请注明原文地址:https://jikaoti.com/ti/WzwRFFFM
0
考研数学一
相关试题推荐
[*]
[*]
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
差分方程yt+1-yt=t2t的通解为_______.
质点P沿着以AB为直径的半圆周,从点A(1,2)运动到点B(3,4)的过程中受变力F作用(如图),F的大小等于点P与原点O之间的距离,其方向垂直于线段OP与y轴正向的夹角小于π/2,求变力F对质点P所作的功.
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d),记当ab=cd时,求I的值.
假设由自动生产线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:T=问平均内径μ取何值时,销售
(2003年试题,四)将函数展开成x的幂级数,并求级数的和.
若当,则a=________,b=________.
随机试题
在分子生物学领域中,分子克隆主要是指
《神农本草经》载药
陈先生,73岁,胃癌晚期,近日病情加重,常抱怨家属照顾欠周到,要求停止治疗。此患者心理反应属于()。
①无论从事什么职业,处于什么岗位②思维能力在人的成功过程中起着举足轻重的作用③著名科学家霍金说过:有一个聪明的大脑,你会比别人更接近成功④没有思维活动的参与,人类的任何发明创造都是根本不可能完成的⑤都是快速走向成功的有利资本⑥拥有较高的智商、活跃的
下列说法正确的是:
根据艾里克森的观点,个人试图回答“我是谁”“我的兴趣是什么”之类的问题的阶段是
局域网的拓扑结构中,每个站由点到点链路连接到公共中心,任意两个站间通信均要通过公共中心的是( )。
SymbolicProcessTheprocessbymeansofwhichhumanbeingsarbitrarilymikecertainthingsstandforotherthingsmanybec
ThenewresidentialHockswereskillfully______withtherestoftheCollegetoformapleasing,self-containedwhole.
(79)ThereisanEnglishsaying:"Laughterisbestmedicine,"Untilrecently,fewpeopletookthesayingseriously.Now,howeve
最新回复
(
0
)