首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)有二阶连续导数,且满足xy"+3xy’2=1-e-x. (1)若f(x)在x=c(c≠0)处取得极值,证明f(c)是极小值. (2)若f(x)在x=0处取得极值,问f(0)是极小值还是极大值? (3)若f(0)=f’(0)=0,证
设y=f(x)有二阶连续导数,且满足xy"+3xy’2=1-e-x. (1)若f(x)在x=c(c≠0)处取得极值,证明f(c)是极小值. (2)若f(x)在x=0处取得极值,问f(0)是极小值还是极大值? (3)若f(0)=f’(0)=0,证
admin
2018-04-18
44
问题
设y=f(x)有二阶连续导数,且满足xy"+3xy
’2
=1-e
-x
.
(1)若f(x)在x=c(c≠0)处取得极值,证明f(c)是极小值.
(2)若f(x)在x=0处取得极值,问f(0)是极小值还是极大值?
(3)若f(0)=f’(0)=0,证明x>0时,
.
选项
答案
(1)因f(c)是极值,故y’(c)=0,代入方程,得 [*] 从而f(c)是极小值. (2)当x≠0时,[*]由y’,y”连续及y’(0)=0,有 [*] 从而f(0)是极小值. (3)当x>0时,[*] 令φ(x)=x一1+e
-x
,有φ’(x)=1—e
-x
>0(x>0),而φ(0)=0,所以φ(x)>φ(0)=0,即[*]从而f”(x)<1.由泰勒公式,[*]∈(0,x),使 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/WzdRFFFM
0
考研数学二
相关试题推荐
设函数z=z(x,y)由方程F(x-ax,y-bx)=0所给出,其中F(u,v)任意可微,则
设A=(Aij)n×n是正交矩阵,将A以行分块为A=(α1,α2,…αn)T,则方程组AX=b,b=(b1,…,bn)T的通解为________.
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是().
设A为n阶方阵,A*为A的伴随矩阵,且A11≠0,证明:方程组Ax=b(b≠0)有无穷多解的充要条件中b为A*x=0的解.
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均为实对称矩阵时,试证(I)的逆命题成立.
求微分方程yy"+y’2=0满足初始条件y|x=0=1,y’|x=0=1/2的特解。
设函数z=z(x,y)由方程F(x-az,y-bz)=0所给出,其中F(u,v)任意可微,则=_________.
(2004年试题,三(4))曲线与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).(I)求的值;(Ⅱ)计算极限
如图1—3—17,一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y与x2+y2=1连接而成的.(1)求容器的体积;(2)若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/
设f(x)在区间[0,1]上可微,且满足条件.试证存在ξ∈(0,1),使f(ξ)+ξf’(ξ)0.
随机试题
X6132型铣床工作台内顺铣机构的作用是什么?
新生儿败血症最有价值的诊断依据是
A.精氨酸B.去氧胆酸C.麝香酮D.蟾蜍甾二烯E.胆甾醇主要存在于牛黄中的是
永安市人民政府土地管理部门欲出让一块位于该市北区的农民集体所有的土地,华天房地产开发公司正拟开发商品住宅小区而需用土地。请根据下列各问中给定的条件回答下列题。设该幅土地为非耕地.面积为300公顷.则其征地审批程序应通过下列何种方式完成?()
()是指除传统信贷业务外,对信用风险、市场风险、操作风险等各种风险,对表内外、境内外、本外币等各项业务,都要纳入风险管理范围。
在数据编码方式中,自含时钟的编码方式为()。
【材料一】美国政府不能认可任何事实上的形势的合法性,也不拟承认中日政府或其代理人间所缔订的有损于美国或其在华国民的条约权利——包括关于中华民国的主权、独立或领土及行政完整,或关于通称为门户开放政策的对华国际政策……
设循环队列的存储空间为Q(1:35),初始状态为front=rear=35。现经过一系列入队与退队运算后,front=15,rear=15,则循环队列中的元素个数为
用于显示线条、图像的控件类型是()。
"HowabouthavingdinneratSunRestaurant?""It______good."
最新回复
(
0
)