首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
admin
2018-02-07
55
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记
若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
。
选项
答案
设A=2αα
T
+ββ
T
,由于|α|=1,α
T
β=β
T
α=0,则 Aα=(2αα
T
+ββ
T
)α =2α|α|
2
+ββ
T
α=2α, 所以α为矩阵对应特征值λ
i
=2的特征向量; Aβ=(2αα
T
+ββ
T
)β =2αα
T
β+β|β|
2
=β, 所以β为矩阵对应特征值λ
2
=1的特征向量。 而矩阵A的秩 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)=2, 所以λ
3
=0也是矩阵的一个特征值。故f在正交变换下的标准形为2y
1
2
+y
2
2
。
解析
转载请注明原文地址:https://jikaoti.com/ti/WxdRFFFM
0
考研数学二
相关试题推荐
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
某型号电子元件寿命(单位:h)服从分布N(160,202),随机抽四件,求其中没有一件寿命小于180h的概率.
设在点x=1处可导,求a,b的值.
设f(x)在[0,1]上连续,取正值且单调减少,证明
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问口为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
随机试题
在下列疾病中,哪一项是引起DIC最常见的疾病
并非类脂的是()。
有关女职工的劳动负荷,正确的是
患者头部外伤后,双眼出现向左侧的同向凝视,可考虑有
固定修复的最佳时机是拔牙后活动修复至少应在拔牙后多长时间进行
蝶鞍MRI证实为垂体微腺瘤,应首选下列哪类药物治疗?
人民法院在保全或者执行会员资格费或者交易席位时,下列表述正确的有()。
从某车站以加速度为米1/18/秒2始发的甲列车出发后9分钟,恰好有一列与甲列车同方向,并以50米/秒作匀速运行的乙车通过该车站,则乙车运行多少分钟与甲车距离为最近?
文化不应仅是祖先给我们的那些东西,更应该是我们创造的、带着当代人生命脉动和智慧体温的文明作物。提到这一点,真是________得厉害:我们很多人还陷在物质围城中,廉价地认为,幸福就是以票子车子房子计量的物质体验。这些算计似乎都与文化真意________。
在发展社会主义市场经济的条件下,在全面建设小康社会的进程中,依据我国经济生活和人们思想道德状况的实际,可将社会主义集体主义的道德要求分为不同的层次。其中,对普通公民最基本的道德要求是()。
最新回复
(
0
)