首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,2,1)T,α2=(1,1,a)T分别是三阶实对称不可逆矩阵A的属于特征值λ1=1与λ2=-1的特征向量。若β=(8,0,10)T,试求Akβ。
已知α1=(1,2,1)T,α2=(1,1,a)T分别是三阶实对称不可逆矩阵A的属于特征值λ1=1与λ2=-1的特征向量。若β=(8,0,10)T,试求Akβ。
admin
2017-01-16
21
问题
已知α
1
=(1,2,1)
T
,α
2
=(1,1,a)
T
分别是三阶实对称不可逆矩阵A的属于特征值λ
1
=1与λ
2
=-1的特征向量。若β=(8,0,10)
T
,试求A
k
β。
选项
答案
由A不可逆可知,A有特征值λ
3
=0,设特征值0对应的特征向量为α
3
=(x
1
,x
2
,x
3
)
T
。注意到A为实对称矩阵,其不同特征值对应的特征向量必正交,故由α
1
T
.α
2
=0,α
1
T
.α
3
=0,α
2
T
.α
3
=0可得 [*] 解得α=-3,x
1
=7x
3
,x
2
=-4x
3
。 令α
3
=(7,-4,1)
T
,将β写成α
1
,α
2
,α
3
的线性组合,由初等行变换 (α
1
,α
2
,α
3
,β) [*] 可得β=3α
1
-2α
2
+α
3
。 由A
k
α
i
=λ
i
k
α
i
(i=1,2,3)得到 A
k
β=A
k
(3α
1
-2α
2
+α
3
)=3A
k
α
1
-2A
k
α
2
+A
k
α
3
=3λ
1
k
α
1
-2λ
k
2
α
2
=3α
1
-2(-1)
k
α
2
=(3+2(-1)
k+1
,6+2(-1)
k+1
,3+6(-1)
k
)
T
, 其中k为正整数。
解析
转载请注明原文地址:https://jikaoti.com/ti/WGwRFFFM
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
证明下列函数是有界函数:
求y=3-x的n阶导数.
被积函数的分子与分母同乘以一个适当的因式,往往可以使不定积分容易求,用这种方法求下列不定积分:
用分部积分法求下列不定积分:
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P|x<y|=().
曲面(z-a)ψ(x)+(z-b)φ(y)=0与x2+y2=1,z=0所围立体的体积V=________(其中φ为连续正值函数,a>0,b>0).
设二二次型f(x1,x2,x3)=XTAX=ax12+2x22+(﹣2x32)+2bx1x3(b>0),其中二次矩阵A的特征值之和为1,特征值之积为﹣(I)求a,b的值;(II)利用正交变换将二次型f化为标准形,并写出所用的正交变换对应的
随机试题
正确选定公文的主送机关的原因。公文的主送机关的类型。
Whoarethesepeoplerushingbyyouinthestreet?Morethan215millionpeoplenowcallAmerica"home",butmostofthemcant
A.轻链蛋白尿B.溶菌酶尿C.两者皆是D.两者皆非肾小管性蛋白尿主要是
电路如题79图所示,两电源共同作用时,U2=5V,当IS单独作用时,U2将()。
某安装公司承接某燃气发电工程,安装公司项目部根据工程特点,编制了施工组织设计,方案中规定:1000m3液化气球罐焊接前应进行预热,焊接工作全部完成后进行整体热处理,最后进行充水试验;设备安装中对每组垫铁的数量和调整方法作了规定;对燃气轮机刚性联轴器同轴度用
仓单融资实质是银行、仓储公司和企业三方之间的一种存货抵押融资方式。
初中生同伴关系的显著特点是()。
AnanalysisoffootageofoctopusesoffthecoastofAustralia"throwing"shellsandsiltsuggeststhattheyintentionallytar
【B1】【B7】
Backin1975,economistsplottedrisinglifeexpectanciesagainstcountries’wealth,andconcludedthatwealthitselfincreases
最新回复
(
0
)