已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2-(2-y)ln y.求曲线f(x,y)=0所围图形绕直线y=-1旋转所成旋转体的体积.

admin2022-09-22  33

问题 已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2-(2-y)ln y.求曲线f(x,y)=0所围图形绕直线y=-1旋转所成旋转体的体积.

选项

答案由[*]=2(y+1)可得f(x,y)=y2+2y+φ(x).又 f(y,y)=(y+1)2-(2-y)ln y=y2+2y+φ(y), 则 φ(y)=1-(2-y)ln y. 因此 f(x,y)=y2+2y+1-(2-x)ln x =(y+1)2-(2-x)ln x. 令f(x,y)=0,可得(y+1)2=(2-x)In x. 当y=-1时,x=1或x=2.从而所求旋转体的体积为 V=π∫12(y+1)2dx=π∫12(2-x)ln xdx =π∫12ln xd(2x-[*]) [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/UihRFFFM
0

最新回复(0)