首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1一θ)2,EX=2(1一θ)(θ为未知参数). (Ⅰ)试求X的概率分布; (Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1一θ)2,EX=2(1一θ)(θ为未知参数). (Ⅰ)试求X的概率分布; (Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
admin
2016-10-26
35
问题
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1一θ)
2
,EX=2(1一θ)(θ为未知参数).
(Ⅰ)试求X的概率分布;
(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
选项
答案
(Ⅰ)设X的概率分布为P{X=0}=p
0
,P{x=1}=p
1
,P{X=2}=p
2
,由题设知p
2
=(1一θ)
2
,又EX=2(1一θ)=0×p
0
+1×p
1
+2p
2
=p
1
+2p
2
=p
0
+2(1一θ)
2
,解得p
1
=2(1一θ)一2(1一θ)
2
=2θ(1一θ),而p
0
+p
1
+p
2
=1,所以p
0
=1一p
1
—p
2
=θ
2
,X的概率分布为 [*] (Ⅱ)应用定义求矩估计值、最大似然估计值.令μ=EX=2(1一θ),解得θ=1一[*],于是θ的矩估计量[*],将样本值代入得θ的矩估计值为1一[*]=[*],即θ的矩估计值[*]又样本值的似然函数 L(x
1
,…,x
10
;θ)=[*]P{X=x
i
,θ}=[2θ(1一θ)]
5
(1一θ)
6
θ
4
=2
5
θ
9
(1一θ)
11
, lnL=5ln2+9lnθ+11ln(1一θ), 令[*]=0,解得θ最大似然估计值[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/UgwRFFFM
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
A、 B、 C、 D、 D
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
下列各对函数中,两函数相同的是[].
已知函数y=sinx的图形,作函数y=2sin﹙2x-π/2﹚的图形.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布N(a,0.22),若以n表示n次称量结果的算术平均值,则为使P{|X ̄-a|<0.1}≥0.95,n的最小值应小于自然数_________.
设f(x)连续,(A为常数),求φ’(t)并讨论φ’(x)在x=0处的连续性.
设u=u(x,y,z)具有二阶连续偏导数,且满足又设S为曲面x2+y2+z2=2az(a>0)的外侧,则
已知二次曲面x2+4y2+3z2+2axy+2xz+2(a-2)yz=1是椭球面,则a的取值为_______.
随机试题
关于旋转阳极X线管的叙述,不正确的是
引起雏鸡卵黄囊炎和脐炎最常见的病原是()
A.滋水涵木法B.益火补土法C.培土生金法D.抑木扶土法E.金水相生法温心阳以补脾阳的治法是
每日终了,由出纳员清点核对现金的工作,属于( )。
撤销权自债权人知道或应当知道撤销事由之日起()内行使。自债务人行为发生之日起()内没有行使撤销权的,该撤销权消灭。
(二)可口可乐在中国的广告策略,用简单的话来表达就是:在广告上必须用消费者明白的方式去沟通。具体行为是启用张惠妹、谢霆锋、飞轮海、张柏芝这些“新人类”做广告代言人,走“年轻化”路线。可口可乐公司在全球力推“本地化思维,本地化营销”的市场策略,使可口可乐
建设部《关于加强住宅工程质量管理的若干意见》强调,住宅工程质量的第一责任者是()。
甲贸易公司与乙公司2015年6月1日订立合同,出售进口牛肉1吨,乙公司应在6月30日前支付货款,甲公司在10日内交付牛肉。6月20日新闻报道美国爆发疯牛病,乙公司即致电甲公司询问牛肉来源,甲公司称其是从加拿大进口,不受影响。乙公司表示因不确定加拿大是否爆发
11岁的董某接受其姑妈赠送的一台照相机,该赠与合同为()。
Optimistsoutlivepessimists,anewstudyshows.Ofnearly100,000women【C1】______intheWomen’sHealthInitiative,thosewhoga
最新回复
(
0
)