首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使=0.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使=0.
admin
2017-12-31
31
问题
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使
=0.
选项
答案
令φ(x)=f(x)∫
x
b
g(t)dt+g(x)∫
a
x
f(t)dt, φ(x)在区间[a,b]上连续,在区间(a,b)内可导,且 φ’(x)=[f’(x)∫
x
b
g(t)dt-f(x)g(x)]+[g(x)f(x)+g’(x)∫
a
x
f(t)dt] =f’(x)∫
x
b
g(t)dt+g’(x)∫
a
x
f(t)dt, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ’(ξ)=0,即 f’(ξ)∫
ξ
b
g(t)dt+g’(ξ)∫
a
ξ
f(t)dt=0, 由于g(b)=0及g’(x)<0,所以区间(a,b)内必有g(x)>0, 从而就有∫
x
b
g(t)dt>0,于是有[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/UIKRFFFM
0
考研数学三
相关试题推荐
已知3阶矩阵A有特征值λ1=1,λ2=2,λ3=3,则2A*的特征值是()
设z=f(2x—y)+g(x,xy),其中函数f(t)二阶可导,g(u,υ)具有二阶连续偏导数,求
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
已知下列非齐次线性方程组(Ⅰ)(Ⅱ):求解方程组(Ⅰ),用其导出组的基础解系表示通解;
设D是由直线x=一2,y=0,y=2以及曲线x=所围成的平面域,则
设z=x3f(xy,),f具有二阶连续偏导数,则=__________.
设f(x)=ln10x,g(x)=x,h(x)=,则当x充分大时有
设D1是由抛物线y=2x2和直线x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2.问当a为何值时,V1+V2取得最大值?试求此最大值.
设偶函数f(x)在x=0的邻域内二阶连续可导,且f(0)=1,(0)=4.证明:绝对收敛.
随机试题
()Anofficiallanguageisinfactanationallanguage.
下丘臂
下列哪种物质与局部血循环调节无直接关系
男,30岁,患甲状腺功能亢进症1年,突然出现双下肢不能动。检查:双下肢膝腱反射减退,无肌萎缩。血钾测定2.3mmol/L,你认为最可能是下列哪种情况
A.甘肃B.浙江C.河南D.吉林E.云南牛膝药材的主产地是
如果A市仲裁委员会受理了甲公司的仲裁申请,并向乙公司发出书面的仲裁通知,但乙公司拒绝提交书面答辩,并在确定的开庭市理之日没有出席,此时会对仲裁程序有何影响?()如果甲公司就该合同纠纷向A市仲裁委员会申请仲裁,乙公司对仲裁条款的效力有异议,请求人
下列关于建筑材料的说法正确的是()。
某公司今年年末的所有者权益总额为9000万元,普通股6000万股。目前的资本结构为长期负债占55%,所有者权益占45%,没有需要付息的流动负债。该公司的所得税税率为30%。预计继续增加长期债务不会改变目前的11%的平均利率水平。董事会在讨论明
从重从快惩处严重危害社会治安的刑事犯罪分子的前提是()。
对肺泡气体分压变化起缓冲作用的是
最新回复
(
0
)