首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=x+x2+…+xn(n≥2). (1)证明方程f(x)=1有唯一的正根x; (2)求.
设f(x)=x+x2+…+xn(n≥2). (1)证明方程f(x)=1有唯一的正根x; (2)求.
admin
2016-10-13
28
问题
设f(x)=x+x
2
+…+x
n
(n≥2).
(1)证明方程f(x)=1有唯一的正根x;
(2)求
.
选项
答案
(1)令φ
n
(x)=f
n
(x)一1,因为φ
n
(0)=一1<0,φ
n
(1)=n—1>0,所以φ
n
(x)在(0,1)[*](0,+∞)内有一个零点,即方程f
n
(x)=1在(0,+∞)内有一个根. 因为φ’
n
(x)=1+2x+…+nx
n—1
>0,所以φ
n
(x)在(0,+∞)内单调增加,所以φ
n
(x)在(0,+∞)内的零点唯一,所以方程f
n
(x)=1在(0,+∞)内有唯一正根,记为x
n
. (2)由f
n
(x
n
)一f
n+1
(x
n+1
)=0,得 (x
n
一x
n+1
)+(x
n
2
一x
n+1
2
)+…+(x
n
n
一x
n+1
n
)=x
n+1
n+1
>0,从而x
n
>x
n+1
,所以{x
n
}x
n+1
∞
单 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/U5wRFFFM
0
考研数学一
相关试题推荐
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
用列举法表示下列集合:(1)方程x2-7x+12=0的根的集合(2)抛物线y=x2与直线x—y=0交点的集合(3)集合{x||x-1|≤5的整数}
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求.
f(x)在[a,b]上有二阶连续导数,且满足方程f〞(x)+x2fˊ(x)-2f(x)=0,证明:若f(a)=f(b)=0,则f(x)在[a,b]上恒为0.
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________.
设F(c,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)
设f(x,y)=|x—y|≯(z,y),其中φ(x,y)在点(0,0)的某邻域内连续.则φ(0,0)=0是f(x,y)在点(0,0)处可微的()
设函数f(x)在x=2的某邻域内可导,且f(x)=ef(x),f(2)=1,计算f(n)(2).
设f(x)在x=0的某邻域内二阶连续可导,且.证明:级数绝对收敛.
随机试题
计算dxdy,其中D:x2+y2≤1,y≥0,x≥0.
硅肺可以引起
患者因楔状缺损。复合树脂充填后,冷热刺激疼痛,不敢咬合。查:复合树脂充填,冷测疼痛,去除后可缓解;叩痛(+)。冷、热测疼痛明显。去除后持续一段时间。的处理原则应为
某男,58岁,因下肢静脉曲张行高位结扎及剥脱术后4小时,因站立排尿,小腿部伤口处突然出血不止。紧急处理方法是
下列有关基本养老保险缴纳基金和费用缴纳的说法正确的是:()
下列关于期限的说法正确的是:()
下列选项中,属于非税收入的是()。
其实“拥有秘密”是成年的一个__________,孩子要长大成人,必然要进入一个拥有秘密的世界。这是一个__________的过程,最初,孩子并没分清哪些是秘密、不知道如何保守秘密、不懂得给秘密分级,但是他们又极为渴望拥有秘密。于是,他们的生活变得____
Whatdoesthemanmean?
Nowadaysyoucan’tbuyanythingwithoutthenbeingaskedtoprovidearatingofacompany’sperformanceonafive-starscale.
最新回复
(
0
)