首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)内连续,其导数的图形如右图,则f(x)有( ).
设函数f(x)在(-∞,+∞)内连续,其导数的图形如右图,则f(x)有( ).
admin
2018-05-22
48
问题
设函数f(x)在(-∞,+∞)内连续,其导数的图形如右图,则f(x)有( ).
选项
A、两个极大值点,两个极小值点,一个拐点
B、两个极大值点,两个极小值点,两个拐点
C、三个极大值点,两个极小值点,两个拐点
D、两个极大值点,三个极小值点,两个拐点
答案
C
解析
设当x<0时,f’(x)与x轴的两个交点为(x
1
,0),(x
2
,0),其中x
1
<x
2
;当x>0时,f’(x)与x轴的两个交点为(x
3
,0),(x
4
,0),其中x
3
<x
4
.当x<x
1
时,f’(x)>0,当x∈(x
1
,x
2
)时,f’(x)<0,则x=x
1
为f(x)的极大点;当x∈(x
2
,0)时,f’(x)>0,则x=x
2
为f(x)的极小值点;当x∈(0,x
3
)时,f’(x)<0,则x=0为f(x)的极大值点;当x∈(x
3
,x
4
)时,f’(x)>0,则x=x
3
为f(x)的极小值点;当x>x
4
时,f’(x)<0,则x=x
4
为f(x)的极大值点,即f(x)有三个极大值点,两个极小值点,又f’’(x)有两个零点,根据一阶导数在两个零点两侧的增减性可得,y=f(x)有两个拐点,选(C).
转载请注明原文地址:https://jikaoti.com/ti/U4dRFFFM
0
考研数学二
相关试题推荐
λ取何值时,方程组无解?有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
(1)证明拉格朗日拉值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f’+(0)存在,且f’+
已知函数f(u)具有二阶导数,且f’(0)=1,函数y=y(x)由方程yxey-1=1所确定,设z=f(lny—sinx),求。
设DkA是网域D=f(x,y)|x2+y2≤1}位于第k象限的部分,记,Ik=(k=1,2,3,4),则
已知A,B为3阶矩阵,且满足2A-1B=B一4E,其中E是3阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若,求矩阵A.
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有
求f(c,y)=x2—y2+2在椭圆域上的最大值和最小值.
设f(x)在[0,1]上具有二阶导数.且满足条件|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明:.
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足.则f(x)的表达式是____________.
随机试题
不利选择
形成黄疸的病理因素有()。
MRI对以下部位病变的检查不如CT的是
中医学概念中的“气”是
患者,女性,63岁,因支气管扩张合并肺部感染、左心衰竭入院治疗,入院时体温39℃,呼吸急促,端坐呼吸。患者以往有骨质疏松,自行长期口服活性钙,护士应嘱咐患者()。
甲公司因无出口自营权,委托乙外贸公司代理出口其产品,乙外贸公司以自己的名义与国外买方订立了出口合同,并且未向买方透露代理关系。根据我国《合同法》,下列表述正确的是( )。
某项目建设期为2年,共向银行借款10000万元,借款年利率为6%,第1和第2年借款比例均为50%,借款在各年内均衡使用,建设期内只计息不付息。则编制投资估算时该项目资金筹措费总和为()万元。
与现时义务有关的经济利益很可能流出企业属于负债的确认条件。()
Amanwhocould________suchtreatmentwasamanofremarkablephysicalcourageandmoralstrength.
我们将着力推动义务教育均衡发展,加快发展现代职业教育,提高各级各类教育质量。
最新回复
(
0
)