首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
从抛物线y=x2—1上的任意一点P(t,t2—1)引抛物线y=x2的两条切线. 求这两条切线的切线方程.
从抛物线y=x2—1上的任意一点P(t,t2—1)引抛物线y=x2的两条切线. 求这两条切线的切线方程.
admin
2019-01-29
33
问题
从抛物线y=x
2
—1上的任意一点P(t,t
2
—1)引抛物线y=x
2
的两条切线.
求这两条切线的切线方程.
选项
答案
[*] 抛物线y=x
2
在点(x
0
,x
0
2
)处的切线方程为 y=x
0
2
+2x
0
(x—x
0
),即y=2x
0
x—x
0
2
. 若它通过点P,则 t
2
—1=2x
0
t—x
0
2
,即x
0
2
—2x
0
t+t
2
—1=0, 解得x
0
的两个解 x
1
=t—1, x
2
=t+1. ① 从而求得从抛物线y=x
2
—1的任意一点P(t,t
2
—1)引抛物线y=x
2
的两条切线的方程是 L
1
:y=2x
1
x—x
1
2
;L
2
:y=2x
2
x—x
1
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/TwWRFFFM
0
考研数学二
相关试题推荐
设当x→x0时,α(x),β(x)(β(x)≠0)都是无穷小,则当x→x0时,下列表达式中不一定为无穷小的是()
求极限:.
设A是n阶矩阵,满足AAT=E(E是n阶单位矩阵,AT是A的转置矩阵),|A|<0,求|A+E|.
若函数f(x)在(0,+∞)上有定义,在x=1点处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且f’(x)=.
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
求下列积分:.
用变量代换x=sint将方程(1-x2)化为y关于t的方程,并求微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
随机试题
凯尔森法律规范体系中包括
A.交界性肿瘤B.早期癌C.良性肿瘤D.癌前病变
气性坏疽最早的表现是
以下咳嗽的相关鉴别症状,表述错误的一项是()
这次论坛旨在立足国家人口与健康事业的重大需求,借助战略性学术交流平台,__________高水准的科研合作团队,__________国际学术前沿,__________我国免疫学相关交叉学科未来发展的重要科学问题,促进免疫学与生命科学各学科及其他科学相关学科
以下关于框架的叙述中,错误的是
有以下程序#includemain(){charp[]={′a′,′b′,′c′},q[10]={′a′,′b′,′c′};printf("%d%d\n",strlen(p),strlen(q));}以下叙述中正确的是
TheprofoundchangeintheeconomicrelationshipbetweenAmericansandtheirpetshasbeencausedbythefactthat______.What
【S1】【S7】
A、Toshowtherelationshipbetweenfearfulnessandenvironment.B、Togiveexamplesofanimalsthataren’tfearful.C、Tocompare
最新回复
(
0
)