在“多边形内角和”一课上,某教师设计如下的教学过程: 一、学生自主学习,通过阅读课本理解多边形的定义及相关概念 1.多边形的定义:在平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形叫作多边形。在定义中应注意:①若干条;②首尾顺次相连,二者缺一

admin2018-03-30  26

问题 在“多边形内角和”一课上,某教师设计如下的教学过程:
一、学生自主学习,通过阅读课本理解多边形的定义及相关概念
1.多边形的定义:在平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形叫作多边形。在定义中应注意:①若干条;②首尾顺次相连,二者缺一不可。
2.多边形的分类:有凸多边形和凹多边形之分。
3.多边形的相关概念:边、内角、顶点、对角线、内角和的含义与三角形相同。
4.多边形的命名和表示:通常以边数命名,多边形有n条边就叫作n边形。三角形、四边形都属于多边形,其中三角形是边数最少的多边形。多边形的表示方法与三角形、四边形类似。可以用表示它的顶点的字母来表示,可顺时针方向表示,也可逆时针方向表示。
二、探索多边形的内角和的公式(见活动探究卡)
在了解了多边形的有关概念后,我们重点来研究和探索多边形的内角和的公式。
活动探究要求:请以小组为单位,利用活动探究卡与同伴合作探索多边形的内角和。
活动:从多边形的一个顶点引对角线来探索多边形的内角和。

结论:
①从n边形的一个顶点出发可以引_______条对角线,把n边形分成_______个三角形,每个三角形的内角和_______。
②n边形的内角和公式:_______。(n≥3)
(学生讨论、画图、猜想、归纳自己的方法,并请小组的中心发言人在全班进行交流展示,教师利用课件演示,师生共同得到结论)
教师小结:在求多边形的内角和时,先把多边形转化成三角形,进而求出内角和,这种由未知转化为已知的方法是我们数学中一种非常重要的方法。
阅读上述教学设计片段,完成下列任务:
请为此教学片段设计一个导入过程。

选项

答案导入环节: 工人师傅将一个四边形的桌面用锯子锯掉一个角,剩余的木板会出现什么形状的图形,还剩几个角?内角和是多少? (学生思考、讨论、回答;教师利用课件演示三种情况。得出结论:三角形,四边形,五边形)如何知道五边形的内角和呢? 这就是本节课我们需要学习的主要内容: 教师板书课题:4.6探索多边形的内角和(一) 并利用课件展示本节课的学习目标,教师导读,学生理解。

解析
转载请注明原文地址:https://jikaoti.com/ti/TLz9FFFM
0

相关试题推荐
最新回复(0)