已知常数k≥ln 2-l,证明:(x-1)(x-ln2x+2kln x-1)≥0.

admin2022-09-22  45

问题 已知常数k≥ln 2-l,证明:(x-1)(x-ln2x+2kln x-1)≥0.

选项

答案当x=1时,显然所证成立. 当x≠1时,令f(x)=x-ln2x+2k ln x-1(x>0),求导得 [*] 令g(x)=x-2ln x+2k,求导得 [*] 令g’(x)=0,得驻点x=2. ①当0<x<1时,g’(x)<0.因此g(x)在(0,1)上单调递减,则 g(x)>g(1)=1+2k≥1+2(ln 2-1)=2ln 2-1>0. 因此f’(x)>0,f(x)在(0,1)上单调递增,故f(x)<f(1)=0. 在(0,1)上,由x-1<0,f(x)<0,可得 (x-1)(x-ln2x+2k ln x-1)>0. ②当x>1时,可知当1<x<2时,g’(x)<0;当x>2时,g’(x)>0. 因此g(x)在(1,2)上单调递减,在(2,+∞)上单调递增,则 g(x)>g(2)=2-2ln 2+2k≥2-2ln 2+2(ln 2-1)=0. 因此f’(x)>0,f(x)在(1,+∞)上单调递增,故f(x)>f(1)=0. 在(1,+∞)上,由x-1>0,f(x)>0,可得 (x-1)(x-ln2x+2k ln x-1)>0. 综上所述,当x>0时,不等式(x-1)(x-ln2x+2k ln x-1)≥0恒成立.

解析
转载请注明原文地址:https://jikaoti.com/ti/SahRFFFM
0

最新回复(0)