设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).

admin2015-08-14  28

问题 设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有
    ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).

选项

答案令F(a)=∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx-f(a)g(1),a∈[0,1],则 F’(a)=g(a)f’(a)一f’(a)g(1)=f’(a)[g(a)一g(1)]. 因为x∈[0,1]时,f’(x)≥0,g’(x)≥0,即函数f(x),g(x)在[0,1]上单调递增,又a≤1,所以 F’(a)=f’(a)[g(a)一g(1)]≤0, 即函数F(a)在[0,1]上单调递减,又 F(1)=∫01g(x)f’(x)dx+∫01f(x)g’(x)dx一f(1)g(1) =∫01[g(x)f(x)]’dx-f(1)g(1)=g(1)f(1)一g(0)f(0)一f(1)g(1) =一f(0)g(0)=0, 所以,F(a)≥F(1)=0,即 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx—f(a)g(1)≥0, 即 ∫0a g(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).

解析
转载请注明原文地址:https://jikaoti.com/ti/S1DRFFFM
0

最新回复(0)