首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上二阶可导,且|f(χ)|≤a,|f〞(χ)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. (1)写出f(χ)在χ=c处带拉格朗日型余项的一阶泰勒公式; (2)证明:|f′(c)|≤2a+.
设f(χ)在[0,1]上二阶可导,且|f(χ)|≤a,|f〞(χ)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. (1)写出f(χ)在χ=c处带拉格朗日型余项的一阶泰勒公式; (2)证明:|f′(c)|≤2a+.
admin
2020-03-16
42
问题
设f(χ)在[0,1]上二阶可导,且|f(χ)|≤a,|f〞(χ)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.
(1)写出f(χ)在χ=c处带拉格朗日型余项的一阶泰勒公式;
(2)证明:|f′(c)|≤2a+
.
选项
答案
(1)f(χ)=f(c)+f′(c)(χ-c)+[*](χ-c)
2
,其中ξ介于c与χ之间. (2)分别令χ=0,χ=1,得 f(0)=f(c)-f′(c)c+[*]c
2
(0,c) f(1)=f(c)+f′(c)(1-c)+[*](1-c)
2
,ξ
2
∈(c,1), 两式相减,得f′(c)=f(1)-f(0)+[*](1-c)
2
,利用已知条件,得 |f′(c)|≤2a+[*][c
2
+(1-c)
2
], 因为c
2
+(1-c)
2
≤1,所以|f′(c)|≤2a+[*].
解析
转载请注明原文地址:https://jikaoti.com/ti/RTARFFFM
0
考研数学二
相关试题推荐
设A是n×m矩阵,B是m×n矩阵(n<m),且AB=E.证明:B的列向量组线性无关.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求方程组AX=0的通解.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵。证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
求下列二重积分:(Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1;(Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1;(Ⅲ)I=ydxdy,其中D由直线z=-2,y=0,y=2及曲线x=所围成.
[2016年]设D是由直线y=l,y=x,y=一x围成的有界区域,计算二重积分dxdy.
[2015年]设函数y=y(x)是微分方程y"+y′一2y=0的解,且在x=0处y(x)取得极值3,则y(x)=________.
[2010年]设y1,y2是一阶线性非齐次微分方程y′+P(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则().
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x,y0)=f(x0,y0),f(x0,y)
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为.试求y=f(x)所满足的微分方程,并求该方程满足条件的解.
微分方程y"’+y’+y=的一个特解应具有形式(其中a,b为常数)()
随机试题
患者,男,28岁。不慎落入河水中,被人救起时昏迷,皮肤苍白、发绀,四肢冰冷,呼吸停止,腹胀。淡水淹溺的病理改变是
肛管排气法,肛管插入直肠深度及保留肛管时间为
《素问.五藏生成》说“人卧则血归于”的脏是
应用分层方法对工程质量进行统计分析时,按产品材料分层可以分为()。
下列各项属于无效的民事行为的有()。
对会议进行现场检查时,一般应先()
下列说法错误的是:
函数f(x,y,z)=x2y3+3y2z3在点(0,1,1)处方向导数的最大值为()
一个字符的标准ASCII码码长是()。
WhatisTRUEaboutBerkin?
最新回复
(
0
)