首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=y(χ)(χ>0)是微分方程2y〞+y′-y=(4-6χ)e-χ的一个特解,此曲线经过原点且在原点处的切线平行于χ轴. (Ⅰ)求曲线y=y(χ)的表达式; (Ⅱ)求曲线y=y(χ)到χ轴的最大距离; (Ⅲ)计算积分∫0+∞
设曲线y=y(χ)(χ>0)是微分方程2y〞+y′-y=(4-6χ)e-χ的一个特解,此曲线经过原点且在原点处的切线平行于χ轴. (Ⅰ)求曲线y=y(χ)的表达式; (Ⅱ)求曲线y=y(χ)到χ轴的最大距离; (Ⅲ)计算积分∫0+∞
admin
2020-12-10
81
问题
设曲线y=y(χ)(χ>0)是微分方程2y〞+y′-y=(4-6χ)e
-χ
的一个特解,此曲线经过原点且在原点处的切线平行于χ轴.
(Ⅰ)求曲线y=y(χ)的表达式;
(Ⅱ)求曲线y=y(χ)到χ轴的最大距离;
(Ⅲ)计算积分∫
0
+∞
y(χ)dχ.
选项
答案
(Ⅰ)微分方程的特征方程为2λ
2
+λ-1=0 特征值为λ
1
=-1,λ
2
=[*]则微分方程2y〞+y′-y=0的通解为 y=C
1
e
-χ
+C
2
[*] 令非齐次线性微分方稗2y〞+y′-y=(4-6χ)e
-χ
的特解为y
0
(χ)=χ(aχ+b)e
-χ
,代人原方程得a=1,b=0,故原方程的特解为y
0
(χ)=χ
2
e
-χ
,原方程的通解为 [*]. 由初始条件y(0)=y′(0)=0得C
1
=C
2
=0,故y=χ
2
e
-χ
. (Ⅱ)曲线y=χ
2
e
-χ
到χ轴的距离为d=χ
2
e
-χ
,令d′=2χe
-χ
-χ
2
e
-χ
=χ(2-χ)e
-χ
=0.得χ=2. 当χ∈(0,2)时,d′>0;当χ>2时,d′<0,则χ=2为d=χ
2
e
-χ
的最大值点,最大距离为d(2)=[*]. (Ⅲ)∫
0
+∞
y(χ)dχ=∫
0
+∞
χ
2
e
-χ
dχ=2.
解析
转载请注明原文地址:https://jikaoti.com/ti/RIARFFFM
0
考研数学二
相关试题推荐
[*]
t=-7
设f(χ)=则f(χ)在χ=0处()
A、 B、 C、 D、 B
A、 B、 C、 D、 A
[2013年]设函数f(x)=lnx+设数列{xn}满足lnxn+<l,证明xn存在,并求此极限.
(15年)设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积.若V1=V2,求A的值.
(13年)设曲线L的方程为(1≤x≤e)(I)求L的弧长;(Ⅱ)设D是由曲线L,直线x=1,x=e及x轴所围平面图形.求D的形心的横坐标.
已知函数y=x3/(x一1)2,求:函数图形的渐近线.
[2004年]设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上f(x)=x(x2一4),若对任意x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[一2,0)上的表达式;
随机试题
胃癌的盆腔转移是前列腺癌的骨盆转移是
患者因头痛、头晕20天,加重伴烦躁、频繁呕吐1天入院。入院体检:生命体征不平稳,头部MRI显示第四脑室肿瘤伴幕上脑室扩大。如术前突发脑疝,最有效的措施是
根据《会计从业资格管理办法》的规定,在国家机关、社会团体、公司、企业、事业单位和其他组织从事()的人员必须取得会计从业资格。
政府采购可以采用的采购方式有()。
4.2011年7月1日,人民法院裁定受理债务人甲公司的破产申请,并指定某律师事务所担任破产管理人,管理人接管甲公司后,发现以下事实:(1)甲公司欠A企业100万元货款。2010年6月1日,应债权人A企业的要求,甲公司以自己100万元的设备设定
工人根据设计蓝图施工时,主要依赖于()。
假设某时刻接收端收到有差错的UDP用户数据报,其动作为()。
我国《法官法》规定,担任法官的最低年龄是()。
A、 B、 C、 D、 C纵观图形可发现各图形均为封闭图形,故选C。
某投资者有本金50000元。他预期A公司股票价格将上涨,准备买入每股市价为10元四五该种股票。假定初始保证金为50%。(1)如果采取现货交易,该投资者可以购买5000股,如果日后股价上涨至12元每股,投资者可以盈利10000元。(2)如
最新回复
(
0
)