首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( )
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( )
admin
2021-01-25
62
问题
设向量组α
1
,α
2
,α
3
线性无关,则下列向量组线性相关的是( )
选项
A、α
1
-α
2
,α
2
-α
3
,α
3
-α
1
。
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
。
C、α
1
-2α
2
,α
2
-2α
3
,α
3
-2α
1
。
D、α
1
+2α
2
,α
2
+2α
3
,α
3
+2α
1
。
答案
A
解析
方法一:根据线性相关的定义,若存在不全为零的数k
1
,k
2
,k
3
,使得k
1
α
1
+k
2
α
2
+k
3
α
3
=0成立,则称α
1
,α
2
,α
3
线性相关。因
(α
1
-α
2
)+(α
2
-α
3
)+(α
3
-α
1
)=0,
故α
1
-α
2
,α
2
-α
3
,α
3
-α
1
线性相关,所以选择A。
方法二:因为
(α
1
+α
2
,α
2
+α
3
,α
3
+α
1
)=(α
1
,α
2
,α
3
)
=(α
1
,α
2
,α
3
)C
2
,且|C
2
|=
=2≠0。故C
2
是可逆矩阵,由可逆矩阵可以表示为若干个初等矩阵的乘积,C
2
右乘(α
1
,α
2
,α
3
)时,等价于作若干次初等变换,初等变换不改变矩阵的秩,故有r(α
1
+α
2
,α
2
+α
3
,α
3
+α
1
)=r(α
1
,α
2
,α
3
)=3。所以,α
1
+α
2
,α
2
+α
3
,α
3
+α
1
线性无关,排除B。
同理α
1
-2α
2
,α
2
-2α
3
,α
3
-2α
1
和α
1
+2α
2
,α
2
+2α
3
,α
3
+2α
1
都线性无关,排除C、D。综上知应选A。
转载请注明原文地址:https://jikaoti.com/ti/REaRFFFM
0
考研数学三
相关试题推荐
[2008年]设则在实数域上与A合同的矩阵为().
[2010年]设f1(x)为标准正态分布的概率密度,f2(x)为[-1,3]上均匀分布的概率密度.若为概率密度,则a,b应满足().
[2013年]设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=___________.
已知是矩阵的一个特征向量.试确定参数a,b及特征向量ξ所对应的特征值;
设总体X的概率分布为其中θ(0<θ<1/2)是未知参数.利用总体的样本值:3,1,3,0,3,1,2,3.求θ的最大似然估计值.
设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Z=X+Y的方差.
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为X与S2,且X~B(1,p),0<P<1.(I)试求:X的概率分布;(Ⅱ)证明:
假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.
设f’(x0)=f"(x0)=0,f"’(x0)>0,则下列选项正确的是
(2000年)计算二重积分其中D是由曲线(a>0)和直线y=一x围成的区域。
随机试题
中期财务报表
与SAP具有矛盾关系的是()
A.复制B.转录C.反转录D.翻译E.基因表达以亲代DNA为模板合成子代DNA分子
某产品的单位变动成本冈耗用的原材料涨价而提高了1元,企业为抵消该变动的小利影响决定提高产品售价1元,假设其他因素不变,则()。
有限合伙人转变为普通合伙人的。对其作为有限合伙人期间有限合伙企业发生的债务,以其认缴的出资额为限承担责任。()
根据以下资料。回答以下题。2009年以来,在灾后恢复重建和扩大内需的各项政策措施的作用下,四川交通运输业投资呈现出快速增长的发展势头。1--4月,全省交通运输业投资255.74亿元,同比增长131.3%,增速较同期全社会投资快52.4个百分点,迎来了高
四企业年总利润增幅最多的一年比最少的一年多几个百分点?
根据货币主义的需求拉上理论,产生通货膨胀的原因是()。
大多数UNIX是由()编写的。
FiveThingsforCollegeGraduatestoKnowI.Degreedoesnot【T1】______youtoajob【T1】______A.Yoursituationaftergraduatio
最新回复
(
0
)