设y1(x),y2(x)为y’+P(x)y=Q(x)的特解,又py1(x)+2qy2(x)为y’+P(x)y=0的解,Py1(x)一qy2(x)为y’+P(x)y=Q(x)的解,则p=_______,q=______.

admin2018-05-23  63

问题 设y1(x),y2(x)为y+P(x)y=Q(x)的特解,又py1(x)+2qy2(x)为y+P(x)y=0的解,Py1(x)一qy2(x)为y+P(x)y=Q(x)的解,则p=_______,q=______.

选项

答案[*]

解析 由一阶线性微分方程解的结构性质得,解得
转载请注明原文地址:https://jikaoti.com/ti/R82RFFFM
0

相关试题推荐
最新回复(0)