首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
已知α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
admin
2015-08-17
19
问题
已知
α
1
是矩阵A属于特征值λ=2的特征向量,α
2
,α
3
是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
选项
A、[α
1
,α
2
,α
3
]
B、[α
1
,α
2
+α
3
,α
2
—2α
3
]
C、[α
1
,α
3
,α
2
]
D、[α
1
+α
2
,α
1
一α
2
,α
3
]
答案
D
解析
若
则有AP=PA,即
即 [Aα
1
,Aα
2
,Aα
3
]=[aα
1
,aα
2
,aα
3
].可见啦是矩阵A属于特征值α
i
的特征向量(i=1,2,3),又因矩阵P可逆,因此,α
1
,α
2
,α
3
线性无关.若α是属于特征值λ的特征向量,则一α仍是属于特征值λ的特征向量,故A正确.若α,β是属于特征值λ的特征向量,则k
1
α+k
2
β仍是属于特征值λ的特征向量.本题中,α
2
,α
3
是属于λ=6的线性无关的特征向量,故α
2
+α
3
,α
2
—2α
3
仍是λ=6的特征向量,并且α
2
+α
3
,α
2
—2α
3
线性无关,故B正确.关于C,因为α
2
,α
3
均是λ=6的特征向量,所以α
2
,α
3
谁在前谁在后均正确.即C正确.由于α
1
,α
2
是不同特征值的特征向量,因此 α
1
+α
2
,α
1
一α
2
不再是矩阵A的特征向量,故D错误.
转载请注明原文地址:https://jikaoti.com/ti/R6PRFFFM
0
考研数学一
相关试题推荐
设函数f(x)由下列表达式确定,求f(x)的连续区间和间断点,并判定间断点的类型.
已知向量组有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(x)的带拉格朗日余项的麦克劳林公式;(2)证明:存在ξ1,ξ2∈[-a,a],使得
设向量组α1=(1,3,2,0)T,α2=(7,0,14,3)T,α3=(2,一1,0,1)T,α4=(5,1,6,2)T,α5=(2,一1,4,1)T,求该向量组的秩和一个极大线性无关组,并把不是极大线性无关组的向量用此极大线性无关组线性表示.
设A为m×n矩阵,B为n×p矩阵,证明r(AB)≥r(A)+r(B)-n.
证明:
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
随机试题
一般体表无损伤而深部脏器发生损伤多见于
下列不属于3D‐PC‐MRA优点的是
具有温肾壮阳、祛寒除湿作用的药物是
患者,男,70岁。家属代诉:患者近晨起床后半小时,突然昏仆,不省人事,目合口张,遗溺,手撒,四肢厥冷,脉细弱。治疗用隔盐灸,应首选
自用房地产转换为采用公允价值模式计量的投资性房地产。转换日该房地产公允价值大于账面价值的差额,正确的会计处理是()。
ThePWPteachingmodelisnotconsideredappropriateinteaching______.
在归部(委)管理的国家局中,国家公务员局归哪个部(委)管理?()
无论对公安机关的职能作怎样的划分和理解,公安机关的基本职能就是()。
下列属于氢氧化钙的特性是()。
YouareLiMing,pleasewritealettertoyourfriendDavidtointroduceyoursummervacationlife.Contents:1.readings
最新回复
(
0
)