首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,f(0)=0,且f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
设f(x)二阶可导,f(0)=0,且f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
admin
2019-05-14
48
问题
设f(x)二阶可导,f(0)=0,且f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
选项
答案
不妨设a≤b,由微分中值定理,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),使得 [*] 两式相减得f(a+b)一f(a)一f(b)=[f’(ξ
2
)一f’(ξ
1
)]a. 因为f"(x)>0,所以f’(x)单调增加,而ξ
1
<ξ
2
,所以f’(ξ
1
)<f’(ξ
2
), 故f(a+b)一f(a)一f(b)=[f’(ξ
1
)一f’(ξ
1
)]a>0,即 f(a+b)>f(a)+f(b).
解析
转载请注明原文地址:https://jikaoti.com/ti/R0oRFFFM
0
考研数学一
相关试题推荐
设L是乒方形边界:|x|+|y|=a(a,>0),则I=∫Lxyds=_______,J=∫L|x|ds=_______.
一大袋麦种的发芽率为80%,从中任意取出500粒进行发芽试验,计算其发芽率的偏差不超过2%的概率.
已知α1,α2,…,αs是互不相同的数,n维向量ai=(1,ai,ai2,…,ain-1)T(i=1,2,…,s),求向量组α1,α2,…,αs的秩.
设A是n阶实反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
求下列微分方程的通解或特解:+2y=e-xcosx.
四元方程组Ax=b的三个解是α1,α2,α3,其中α1=(1,1,1,1)T,α2+α3=(2,3,4,5)T,如r(A)=3,则方程组Ax=b的通解是_______.
设f(x)在x=0处二阶可导,又I==1,求f(0),f’(0),f"(0).
作自变量与因变量变换:u=x+y,v=x-y,w=xy-z,变换方程为w关于u,v的偏导数满足的方程,其中z对x,y有连续的二阶偏导数.
判断下列曲线积分在指定区域D是否与路径无关,为什么?∫Lf(x2+y2)(xdx+ydy),其中f(u)为连续函数,D:全平面.
随机试题
现实生活中,人们对待人生的态度千差万别、多种多样。培养和树立积极进取的人生态度,能够
A.病原体被清除B.隐性感染C.潜伏性感染D.病原体携带状态E.显性感染感染过程中最常见的表现是
引起小鹅瘟的病原属于
水落口杯与基层接触处应留宽()mm、深()mm的凹槽,并用密封材料嵌填。
关于宗地草图的作用,下列不正确的是()。
下列关于客户开户、提交担保品与授信的说法,正确的有()
一个完整人体的形成,是各细胞在特定基因编码的引导下发生的分化。这种在分化之前的细胞被称作“干细胞”。若是能够想办法利用这些“干细胞”,那么受损的肌肉、皮肤甚至肢体,都可以结束漫长的痛苦而重获新生,永葆青春或许也将不是幻想。根据以上材料,下列说法正确的是:
虽然索尼通过购买哥伦比亚影片公司最终实现了向娱乐公司_________的战略,但花费了多得多的成本和时间。轻率的购买行为不是加速而是_________了索尼战略的实现。填入横线部分最恰当的一项是()。
深入贯彻落实科学发展观,要求继续深化改革开放,要做到
Accordingtothepassage,avolcanosendsoutThephrase"stayalive"inthelastparagraphcanbestbereplacedby
最新回复
(
0
)