首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
admin
2018-11-11
42
问题
设α
1
,α
2
,…,α
n
为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
选项
答案
方法一 令A[*],因为α
1
,α
2
,α
m
与β正交,所以Aβ=0,即β为方程组Ax=0的解,而α
1
,α
2
,α
n
线性无关,所以r(A)=n,从而方程组AX=0只有零解,即β=0. 方法二 (反证法)不妨设β≠0,令k
1
α
1
+k
2
α
2
+…+k
n
α
n
+k
0
β=0,上式两边左乘β
T
得 k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
n
β
T
α
n
+k
0
β
T
β=0 因为α
1
,α
2
,…,α
n
与β正交,所以k
0
β
T
β=0,即k
0
|β|
2
=,从而k
0
=0,于是k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0,再由α
1
,α
2
,…,α
n
线性无关,得k
1
=k
2
=…k
n
=0,故α
1
,α
2
,…,α
n
,β线性无关,矛盾(因为当向量的个数大于向量的维数时向量组一定线性相关),所以β=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/QaWRFFFM
0
考研数学二
相关试题推荐
设矩阵A与B相似,且求a,b的值;
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2.求z=f(x,y)在椭圆域D=上的最大值和最小值.
设F(x,y,z)=zarctany2i+z3ln(x2+1)j+zk,求F通过抛物面x2+y2+z=2位于平面z=1的上方的那一块流向上侧的流量.
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
求极限
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设∫0yetdt+∫0χcostdt确定函数y=y(χ),则=_______.
设∫0yetdt+∫0xcostdt=xy确定函数y=y(x),则=_______
随机试题
甲、乙、丙、丁四人合作创作一部小说,甲欲将该小说许可给某电影制片厂改编后拍成电影,乙则想把它许可给某网站在网络上传播,丙对这两种做法均表示反对,丁则不置可否。对此,下列哪一选项是正确的?()
超声探头压电材料的作用是
有关痈处理方法不正确的是
某新生儿出生6小时,进行预防接种。接种卡介苗的正确方法是()
铁路道口自动信号机应在列车接近道口时,向公路方向显示(),并发出音响通知。
背景某机场场道土基为盐渍土。机场于2011年8月正式开始飞行区跑道加长工程,此工程将跑道两端各延长200m,整个施工不涉及飞行程序及起飞着陆最低标准的更改。开工前,项目部准备了组织与进度管理文件,明确了施工安全管理措施,编制了施工进度计划,配置相关的检测
下列关于胀锚地脚螺栓安装的要求,说法错误的是()。
现代企业制度中的法人治理结构包括以下内容()。
下列关于公文格式的说法中,不正确的一项是()。
在某展会的产品展示区,公司计划在大屏幕投影上向来宾自动播放并展示产品信息,因此需要市场部助理小王完善产品宣传文稿的演示内容。按照如下需求,在PowerPoint中完成制作工作:将考试文件夹中的声音文件“BackMusic.mid”作为该演示文稿的背景音
最新回复
(
0
)