设f(x)在区间(-∞,﹢∞)上连续,且满足f(x)=∫0xf(x-t)sin tdt﹢x.则在(-∞,﹢∞)上,当x≠0时,f(x) ( )

admin2022-09-14  36

问题 设f(x)在区间(-∞,﹢∞)上连续,且满足f(x)=∫0xf(x-t)sin tdt﹢x.则在(-∞,﹢∞)上,当x≠0时,f(x)    (    )

选项 A、恒为正.
B、恒为负.
C、与x同号.
D、与x异号.

答案C

解析 令x-t=u,作积分变量代换,得
f(x)=∫x0f(u)sin(x-u)d(-u)﹢x=∫0xf(u)sin(x-u)du﹢x
=sin x∫0xf(u)cos udu-cos x∫0xf(u)sinudu﹢x,
f(x)=cos x∫0xf(u)cos udu﹢sin x·cos x·f(x)﹢sin x∫0xf(u)sin udu-cos x·sin x·f(x)﹢1
=cos x∫0xf(u)cos udu﹢sin x∫0xf(u)sin udu﹢1,
f(x)=-sin x∫0xf(u)cos udu﹢cos2x·f(x)﹢cos x∫0xf(u)sin udu﹢sin2x·f(z)
=f(x)-f(x)﹢x=x,
所以f(x)=﹢C1x﹢C2.又因f(0)=0,f(0)=1,所以C1=1,C2=0.从而
故应选(C).
转载请注明原文地址:https://jikaoti.com/ti/PxhRFFFM
0

最新回复(0)