首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ),g(χ)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(χ)=∫0χf(t)g(t)dt,则
设f(χ),g(χ)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(χ)=∫0χf(t)g(t)dt,则
admin
2020-06-11
51
问题
设f(χ),g(χ)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(χ)=∫
0
χ
f(t)g(t)dt,则
选项
A、χ=0是函数F(χ)的极小值点.
B、χ=0是函数F(χ)的极大值点.
C、(0,F(0))是曲线y=F(χ)的拐点但χ=0不是F(χ)的极值点.
D、χ=0不是函数F(χ)的极值点,(0,F(0))也不是曲线y=F(χ)的拐点.
答案
C
解析
先求导数F′(χ)=f(χ)g(χ)
F′(0)=0.
再求二阶导数F〞(χ)=f′(χ)g(χ)+f(χ)g′(χ)
F〞(0)=0.
于是还要考察F(χ)在χ=0处的三阶导数:
F″′(χ)=f〞(χ)g(χ)+2f′(χ)g′(χ)+f(χ)g〞(χ)
F″′(0)=2f′(0)g′(0)≠0.
因此(0,F(0))是曲线y=F(χ)的拐点且χ=0不是F(χ)的极值点.故应选C.
转载请注明原文地址:https://jikaoti.com/ti/PgARFFFM
0
考研数学二
相关试题推荐
已知的一个特征向量。求参数a,b及特征向量P,所对应的特征值;
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
A、若un≤vn,且(Ⅱ)收敛,则(Ⅰ)一定收敛B、若un≤vn,且(Ⅰ)发散,则(Ⅱ)一定发散C、若0≤un≤vn,且(Ⅱ)收敛,则(Ⅰ)一定收敛D、若0≤un≤vn,且(Ⅱ)发散,则(Ⅰ)一定发散C
证明对于任何m×n实矩阵A,ATA的负惯性指数为0.如果A秩为n,则ATA是正定矩阵.
[*]
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
设n阶矩阵A满足A2+2A-3E=O.求:(A+4E)-1.
求下列函数的差分:(1)yx=c(c为常数),求△yx.(2)yx=x2+2x,求△2yx.(3)yx=ax(a>0,a≠1),求△2yx.(4)yx=logax(a>0,a≠1),求△2yx.(5)yx=sinax,求△yx.(6)yx=x3
(1)设函数f(x)的一个原函数为ln2x,求∫xf’(x)dx.(2)设∫xf(x)dx=agcsinx+C,求(3)设,求∫f(x)dx.(4)
随机试题
简述作者需具备哪些条件?
关于氨对中枢神经系统毒性作用的叙述,不正确的是
A.FOSB.PDGFC.CDK4D.ERBB1E.ROS属于信号转导分子的癌基因是
土的有效应力是指土颗粒所承担的力。()
在城区进行航空摄影测量时,为了有效减小航摄像片上投影差的影响,应选择()摄像机进行摄像。
个人汽车贷款相关资料的复印件不可作为贷款档案。()
川剧主要流行于四川、陕西和贵州部分地区。()
根据《中华人民共和国种子法》的相关规定,下列说法错误的是()。
对剥夺政治权利的罪犯由公安机关负责执行。()
IdentityTheftA)Identitytheftandidentityfraudaretermsusedtorefertoalltypesofcrimeinwhichsomeonewrongfullyobt
最新回复
(
0
)