首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型 f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3. (1)写出二次型f的矩阵表达式; (2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
已知二次型 f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3. (1)写出二次型f的矩阵表达式; (2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
admin
2018-09-20
34
问题
已知二次型
f(x
1
,x
2
,x
3
)=4x
2
2
-3x
3
2
+4x
1
x
2
-4x
1
x
3
+8x
2
x
3
.
(1)写出二次型f的矩阵表达式;
(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
选项
答案
(1)二次型的矩阵[*],则二次型f的矩阵表达式f=x
T
Ax. (2)A的特征多项式|λE一A|=(6+λ)(1一λ)(6一λ),则A的特征值λ
1
=一6,λ
2
=1,λ
3
=6. λ
1
=一6对应的正交单位化特征向量[*] λ
2
=1对应的正交单位化特征向量[*] λ
3
=6对应的正交单位化特征向量[*] 令正交矩阵 P=[p
1
,p
2
,p
3
]=[*] 所求正交变换为[*]二次型f的标准形为f=一6y
1
2
+y
2
2
+6y
3
2
解析
转载请注明原文地址:https://jikaoti.com/ti/PfIRFFFM
0
考研数学三
相关试题推荐
设A是n阶正交矩阵,λ是A的实特征值,α是相应的特征向量.证明λ只能是±1,并且α也是AT的特征向量.
设3阶实对称矩阵A的特征值,λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设矩阵A=的特征值有重根,试求正交矩阵Q,使QTAQ为对角形.
设A是3阶矩阵,且各行元素之和都是5,则A必有特征向量_______.
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(a,b)使f’(ξ)=0.
已知A暑3阶不可可矩阵,-1和2是A的特征值.B=A2-A-2E,求B的特征值,并问B能否相似对角化,并说明理由.
设A是3阶实对称矩阵,特征值是0,1,2.如果λ=0与λ=1的特征向量分别是α1=(1,2,1)T与α2=(1,-1,1)T,则λ=2的特征向量是_______.
参数a取何值时,线性方程组有无数个解?求其通解.
设的一个特征值为λ1=2,其对应的特征向量为ξ1=判断A是否可对角化,若可对角化,求可逆矩阵P,使得P一1AP为财角矩阵.若不可对角化,说明理由.
随机试题
下列句子中,属于兼语句的是()。
下列化合物中,铁的氧化数是+3的是
A.0.1mmB.0.2mmC.0.3mmD.0.5mmE.1.0mm金属烤瓷冠金属舌侧龈边缘的宽度般为
A、侧柏叶B、大青叶C、蓼蓝叶D、番泻叶E、紫苏叶气清香,味微辛()
A.乙胺丁醇B.利福平C.异烟肼D.对氨基水杨酸E.卡那霉素长期大量应用可致视神经炎、视力下降、视野缩小、出现盲点
药物致畸作用的妊娠敏感期是()。
以下关于行政复议和行政诉讼两者之间的区别,说法错误的是()。
小强期中考试失利,但是他没有气馁,而是认真分析了失败原因,找到了问题,确定了新的方向,小强这种对待挫折的方式是()
项目组成员中有一名专职的文件管理员,其主要职责之一是负责项目组的文件收发和保管。针对文件收发环节,以下叙述不正确的是______。
在VB中,函数过程与子程序过程的区别之一是
最新回复
(
0
)