设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πcosxdx=0。证明在(0,π)内f(x)至少有两个零点。

admin2021-11-09  44

问题 设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πcosxdx=0。证明在(0,π)内f(x)至少有两个零点。

选项

答案反证法,如果f(x)在(0,π)内无零点(或有一个零点,但f(x)不变号,证法相同),即f(x)>0(或<0),由于在(0,π)内,有sinx>0,因此,必有∫0π)sinxdx>0(或<0)。这与假设相矛盾。 如果f(x)在(0,π)内有一个零点,而且改变一次符号,设其零点为a∈(0,π),于是在(0,a)与(a,π)内f(x)sin(x一a)同号,因此∫0πf(x)sin(x一a)dx≠0。但是,另一方面 ∫0πf(x)sin(x一a)dx=∫0πf(x)(sinxcosa一cosxsina)dx =cosa∫0πf(x)sinxdx一sina∫0πf(x)cosxdx=0。 这个矛盾说明f(x)也不可能在(0,π)内只有一个零点,因此它至少有两个零点。

解析
转载请注明原文地址:https://jikaoti.com/ti/PPlRFFFM
0

最新回复(0)