设点M(ξ,η,ζ)是椭球面上第一象限中的点,S是该椭球面点M处的切平面被三个坐标面所截得的三角形上侧,求(ξ,η,ζ),使曲面积分为最小,并求此最小值.

admin2014-04-23  46

问题 设点M(ξ,η,ζ)是椭球面上第一象限中的点,S是该椭球面点M处的切平面被三个坐标面所截得的三角形上侧,求(ξ,η,ζ),使曲面积分为最小,并求此最小值.

选项

答案曲面[*]上点M(ξ,η,ζ)的法向量为[*] 切平面方程是[*] 化简即得[*] 该切平面被三坐标面截得的三角形在xOy平面上的投影区域为[*] 从而[*] 所以[*] 求I的最小值等价于求w=ξηζ,0<ξ<a,0<η<b,0<ζ<c的最大值,约束条件是[*] 由拉格朗日乘数法得[*] 显然,当ξ=a或ξ=0时,w最小,故当[*]时,w最大,I的最小值为[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/PEcRFFFM
0

最新回复(0)