首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0, 求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0, 求f(x).
admin
2018-01-23
24
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,
求f(x).
选项
答案
因为x∫
0
1
f(tr)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0可化为 f’(x)+3∫
0
x
f’(t)dt=2∫
0
x
f(t)dt+e
-x
=0, 两边对x求导得f’’(x)+3f’(x)+2f(x)=e
-x
, 由λ
2
+3λ+2=0得λ
1
=-1,λ
2
=-2, 则方程f’’(x)+3f’(x)+2f(x)=0的通解为C
1
e
-x
+C
2
e
-2x
. 令f’’(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=axe
-x
,代入得a=1, 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
. 由f(0)=1,f’(0)=-1得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
.
解析
转载请注明原文地址:https://jikaoti.com/ti/OhKRFFFM
0
考研数学三
相关试题推荐
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x一e-x是某二阶线性非齐次微分方程的三个解,求此微分方程.
若连续函数满足关系式则f(x)等于
设函数f(x)在区间[0.1]上连续,在(0,1)内可导,且,试证(1)存在,使f(η)=η.(2)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.试证存在ξ,η∈(a,b),使得
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1讨论f’(x)在(一∞,+∞)上的连续性.
设某产品的成本函数为C=aq2+bq+c,需求函数为其中C为成本,q为需求量(即产量),p为单价,a,b,c,d,e都是正的常数,且d>b.求:(1)利润最大时的产量及最大利润;(2)需求对价格的弹性;(3)需求对价格弹性的绝对值为1时的产量.
设(x0,y0)是抛物线y=ax2+hx+c上的一点.若在该点的切线过原点,则系数应满足的关系是__________.
设f(x)有连续的导数,f(0)=0且f’(0)=b,若函数在x=0处连续,则常数A=__________.
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为
随机试题
Mostpeoplewouldagreethat,althoughourageexceedsallpreviousagesinknowledge,therehasbeennocorrespondingincrease
下列关于同工酶的叙述正确的是()
胁肋胀痛,腹泻肠鸣,其治疗方选( )。胁肋胀痛,走窜不定,恶心呕吐。其治疗方选( )。
青年李某,右下腹疼痛难忍,到医院就诊。经医师检查,检验,当即诊断为急性阑尾炎,遂对其施行阑尾切除术。手术情况正常,但拆线时发现伤口愈合欠佳,有淡黄色液体渗出。手术医师告知,此系缝合切口的羊肠线不为李某人体组织吸收所致,在临床中少见。经过近1个月的继续治疗,
切断肺结核传播途径最有效的措施是()
某建筑工程竣工后申请消防安全检查但未通过,限期未整改便有商家人驻营业,公安消防机构应当()
下列各项中,属于车辆购置税应税行为的有()。
以下关于队列的叙述中哪一个是不正确的?
Ifyouleftyourbookonthetableovernight,youwouldfindthefollowingmorningthatitwasstillexactlywhereyouhadleft
Manyayoungpersontellsmehewantstobeawriter.Ialwaysencouragesuchpeople,butIalsoexplainthatthere’sabigdiff
最新回复
(
0
)