首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3)是5×3矩阵β1,β2是齐次线性方程组ATx=0的基础解系,试证α1,α2,α3,β1,β2线性无关.
设A=(α1,α2,α3)是5×3矩阵β1,β2是齐次线性方程组ATx=0的基础解系,试证α1,α2,α3,β1,β2线性无关.
admin
2016-01-11
35
问题
设A=(α
1
,α
2
,α
3
)是5×3矩阵β
1
,β
2
是齐次线性方程组A
T
x=0的基础解系,试证α
1
,α
2
,α
3
,β
1
,β
2
线性无关.
选项
答案
因β
1
,β
2
是齐次线性方程组A
T
x=0的基础解系,所以有5-r(A
T
)=2,即r(A)=3,故α
1
,α
2
,α
3
线性无关.又 [*] 有 α
j
T
β
i
=0(i=1,2,j=1,2,3).设 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
β
1
+k
5
β
2
=0,令 γ=k
1
α
1
+k
2
α
2
+k
3
α
3
=一k
4
β
1
+k
5
β
2
,则 (k
1
α
1
+k
2
α
2
+k
3
α
3
,-k
4
β
1
-k
5
β
2
)=(γ,γ)=0.因而k
1
α
1
+k
2
α
2
+k
3
α
3
=0,一k
4
β
1
-k
5
β
2
=0,而α
1
,α
2
,α
3
及β
1
β
2
是线性无关的,故k
1
=k
2
=k
3
=0,k
4
=k
5
=0,从而α
1
,α
2
,α
3
,β
1
β
2
线性无关.
解析
本题是向量与方程组的综合题.注意齐次线性方程组的基础解系是线性无关的.
转载请注明原文地址:https://jikaoti.com/ti/NjDRFFFM
0
考研数学二
相关试题推荐
设Z=X+Y,其中随机变量x与Y相互独立,且分布函数分别为求方差D∣Z∣.
设an=∫0+∞xnexdx(n=0,1,2,…).求的收敛域及和函数.
设(X,Y)服从二维正态分布N(0,0,1/2,1/2;0),Φ(x)为标准正态分布函数,则P{X-Y<E(|X-Y|)}=()
设3维列向量组a1,a2,a3线性无关,向量组a1-a2,a2+a3,-a1+aa2+a3线性相关,则a=()
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).若α=(1,2,-1)T,求Aα;
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求A的特征值和特征向量;
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.求S1与S2绕Oy轴旋转一周所产生的两个旋转体的体积之比.
已知f(x)在(-∞,+∞)内可导,且,求a的值.
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是().
设f(x)连续,且∫0xtf(2x-t)dt=1/2arctanx2,f(1)=1,求∫12f(x)dx.
随机试题
保持时间为0.25~1.2秒即消失的记忆为()
下列有关上市公司收购说法正确的是:()
下面()不属于轴上零件的轴向定位方式。
认为新的技术发展会带来新的危险源,安全工作的目标就是控制危险源,努力把事故发生概率降到最低。这是()理论的观点之一。
银行汇票的出票金额可以手写,也可以用压数机压印。()
The()isIhepersonorcompanywhohasconcludedacontractwiththeshipperforcarriageofgoodsbysea.
培训反馈是企业组织与管理必不可少的一个程序,包括()等内容。
英文缩写CAM的中文意思是()。
Unfortunately,GutzomBorglundiedin1941,justafewmonths______finishinghiscollegeeducation.
Whydon’tbirdsgetlostontheirlongflightsfromoneplacetoanother?Scientistshavepuzzledoverthisquestionformanyye
最新回复
(
0
)