首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论 α1能否由α2,α3,…,αm-1线性表示?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论 α1能否由α2,α3,…,αm-1线性表示?
admin
2019-08-06
34
问题
设α
1
,α
2
,…,α
m-1
(m≥3)线性相关,向量组α
2
,…,α
m
线性无关,试讨论
α
1
能否由α
2
,α
3
,…,α
m-1
线性表示?
选项
答案
方法一:因为α
2
,α
3
,…,α
m
线性无关,所以α
2
,α
3
,…,α
m-1
也线性无关;又因为α
1
,α
2
,…,α
m-1
(m≥3)线性相关,所以α
1
能由α
2
,α
3
,…,α
m-1
线性表示. 方法二:因为α
1
,α
2
,…,α
m-1
线性相关,故存在不全为零的数k
1
,k
2
,…,k
m-1
使得 k
1
α
1
+k
2
α
2
+…+k
m-1
α
m-1
=θ, 其中必有k
1
≠0;否则,若k
1
=0,则k
2
,k
3
,…,k
m-1
不全为零,使得 k
2
α
2
+…+k
m-1
α
m-1
=θ 成立,从而α
2
,α
3
,…,α
m-1
线性相关,进而α
2
,…,α
m
线性相关,与已知矛盾,故k
1
≠0,α
1
=-(k
2
/k
1
)α
2
-…-(k
m-1
/k
1
)α
m-1
,所以α
1
能由α
2
,α
3
,…,α
m-1
线性表示.
解析
转载请注明原文地址:https://jikaoti.com/ti/NcnRFFFM
0
考研数学三
相关试题推荐
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且证明:f’(x0)=M.
设随机变量X~U(0,1),在X=x(0<x<1)下,Y~U(0,x).求Y的边缘密度函数.
设A为m×n阶实矩阵,且r(A)=N.证明:ATA的特征值全大于零.
设的一个特征值为λ1=,其对应的特征向量为求常数a,b,c;
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设有三个线性无关的特征向量,求a及A*.
证明:满足微分方程y(4)-y=0并求和函数S(x).
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a2)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
随机试题
初级阶段的社会主义是资本主义而非社会主义。
最常见的食物中毒是
A、祛风经络,利水B、祛风湿,强筋骨,利水消肿C、祛风湿,杀虫解毒D、祛风湿,消痰水E、祛风通络,凉血消肿桑枝的功效是
某医疗机构通过招标采购,采购一批进口疫苗。该医疗机构发现其使用的某进口疫苗,导致多名儿童接种后出现发热、呕吐而住院,应当立即通过电话或者传真等方式报所在地的()
电气设备与操作过电压绝缘配合时,电气设备外绝缘的耐压取值方法错误的是?
背景材料:某公路工程施工单位承包了一座5×30m后张法预应力混凝土T梁桥,施工单位虽然按照设计文件和相关施工技术规范的要求进行施工,并作了主要检验内容。由于施工现场管理人员质量安全意识淡薄,T梁平移中出现死亡6人,伤2人,经济损失重大的事故。交通主管部门
列
有青山绿水的地方就有茶香,有茶香的地方就有中国文化。茶、可可、咖啡并称世界三大饮料,但茶才是_______的饮界领袖。茶虚静清雅,_______了佛儒道各家精华,充满了中国滋味和中国精神。填入画横线部分最恰当的一项是:
几千年前。在非洲湿热的原始森林里,土著居民围着火堆,跟随各种复杂节奏自由而热烈地边舞边唱。这种歌声,也许在某些“文明人”眼里算不上音乐。然而,这样的声音却是最原始的,是在恶劣环境里顽强的本能所发出的生命之音。如果说布鲁斯音乐是很多音乐的根源,那么,上面所说
A、Hissuggestionsandhelp.B、Thecruelrealityandunpleasantlife.C、Theresponsibilitytohelpothers.D、Theprotectionofot
最新回复
(
0
)