首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x2+4y2+xy+2在区域D上的最大值与最小值, 其中D=。
求函数f(x,y)=x2+4y2+xy+2在区域D上的最大值与最小值, 其中D=。
admin
2020-05-09
34
问题
求函数f(x,y)=x
2
+4y
2
+xy+2在区域D上的最大值与最小值,
其中D=
。
选项
答案
区域D如图所示, [*] 函数f(x,y)=x
2
+4y
2
+xy+2在该区域上的最值问题分为两部分讨论,即边界上的条件极值及D内部的无条件极值。 [*] (1)L
1
:y=[*],将该条件代入f(x,y)=x
2
+4y
2
+xy+2,可得 [*], 求导得f
’
(x)=5x-5,解得驻点[*], 则[*]。 (2)L
2
:[*],令 F(x,y,λ)=x
2
+4y
2
+xy+2+[*], 求偏导,得 [*] 解得4组驻点[*],则 [*]。 (3)D内部, f(x,y)=x
2
+4y
2
+xy+2, 求此函数的驻点,[*] 解得驻点为(0,0),则f(0,0)=2。 通过比较可知,最大值为[*]=7,最小值为f(0,0)=2。
解析
转载请注明原文地址:https://jikaoti.com/ti/N8ARFFFM
0
考研数学二
相关试题推荐
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设α是n维单位列向量,A=E-ααT.证明:r(A)<n.
设f(x),g(x)在[a,b]上连续,且满足∫abf(t)dt≥∫axg(t)dt,x∈[a,b)∫abf(t)dt=∫abg(t)dt,证明:∫abxf(x)dx≤∫abxg(x)dx.
求f(x)=的x3的系数.
设D=计算D;
设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f’(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在内有唯一的实根.
设函数f(χ),g(χ)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f′(a)=g′(a),f〞(χ)>g〞(χ)(χ>a).证明:当χ>a时,f(χ)>g(χ).
设其中函数f可微,则=()
求下列曲线的曲率或曲率半径:(Ⅰ)求y=lnχ在点(1,0)处的曲率半径.(Ⅱ)求χ=t-ln(1+t2),y=arctant在t=2处的曲率.
设则(A-1)*=________.
随机试题
顺应性迁移是指将原有的经验应用于新情境时,需调整原有的经验或对新旧经验加以概括,形成一种能包容新旧经验的更高一级的经验结构,以适应外界的变化。根据上述定义,下列体现顺应性迁移的是:
______hewillcomeornotisunknown.
中医学认为,甲状腺功能亢进症的基本病理是
下列各项,应通过“固定资产清理”科目核算的有()。
公司法人资格宣告消灭的是( )。
在控制检查风险时,注册会计师应当采取的有效措施是()。
在公钥体系中,需要保密的是________。
WhatdoesSallydointhesupermarket?
AirFranceSAsaidMondaythatitssecond-quarternetprofitfell35percentto€57million($57.4million),butsaleswerestea
Sharingaccommodationis______.WhichofthefollowingisTRUEaccordingtothepassage?
最新回复
(
0
)