首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列三重积分: (Ⅰ)I=,其中Ω是球体x2+y2+z2≤R2(h>R); (Ⅱ)I=,其中Ω:1≤x+y≤2,x≥0,y≥0,0≤z≤3; (Ⅲ)I=(x3+y3+z3)dV,其中Ω由半球面x2+y2+z2=2z(z≥1)与锥面z=围成.
求下列三重积分: (Ⅰ)I=,其中Ω是球体x2+y2+z2≤R2(h>R); (Ⅱ)I=,其中Ω:1≤x+y≤2,x≥0,y≥0,0≤z≤3; (Ⅲ)I=(x3+y3+z3)dV,其中Ω由半球面x2+y2+z2=2z(z≥1)与锥面z=围成.
admin
2018-11-21
26
问题
求下列三重积分:
(Ⅰ)I=
,其中Ω是球体x
2
+y
2
+z
2
≤R
2
(h>R);
(Ⅱ)I=
,其中Ω:1≤x+y≤2,x≥0,y≥0,0≤z≤3;
(Ⅲ)I=
(x
3
+y
3
+z
3
)dV,其中Ω由半球面x
2
+y
2
+z
2
=2z(z≥1)与锥面z=
围成.
选项
答案
(Ⅰ)积分区域Ω是球体,也是旋转体,结合被积函数特点,还是选用柱坐标变换,并选用先r,z的积分顺序.极角为θ的半平面交Ω得平面区域D(θ)为已知(图9.58),于是 [*] (Ⅱ)Ω可表示成:Ω:0≤z≤3,(x,y)∈D
xy
,其中D
xy
={(x,y)|x≥0,y≥0,1≤x+y≤2},D
xy
如图9.59.于是I=[*]dxdy. 这里先x后y和先y后x的积分顺序均不可行.作极坐标变换,则D
xy
的极坐标表示为 [*] (Ⅲ)首先由对称性及奇偶性得I=[*]z
3
dV. Ω由半球面及锥面围成.用球坐标变换方便,此时Ω表示为: 0≤θ≤2π,0≤φ≤[*],0≤ρ≤2cosφ, 则 I=∫
0
π
dθ[*]dφ∫
0
2cosφ
ρ
3
cos
3
φ.ρ
2
sinφdρ [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/N72RFFFM
0
考研数学一
相关试题推荐
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点.若极径OM0,OM与曲线L所围成的曲边扇形的面积值等于L上M0,M两点间弧长值的一半,求曲线L的方程.
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
直线L1:②().
设S是平面x+y+z=4被圆柱面x2+y2=1截出的有限部分,则曲面积分ydS=().
设n阶矩阵A与B相似,E为n阶单位矩阵,则()
设f(x,y)连续,且f(x,y)=xy+f(u,v)dudv,其中D是由y=0,y=x2,x=1所围成的区域,则f(x,t)等于()
定积分=()
设有一半径为R的球体,P0是此球的表面上的一个定点,球体上任一点的密度与该点到P0距离的平方成正比(比例常数k>0),求球体的重心位置。
已知L是第一象限中从点(0,0)沿圆周x2+y2=2x到点(2,0),再沿圆周x2+y2=4到点(0,2)的曲线段,计算曲线积分3x2ydx+(x3+x-2y)dy。
随机试题
简述管理学的学科特征。
下列哪项病症常引起中老年患者肾病综合征
A.心B.肺C.脾D.肝E.肾
下列不属于委托人权利的是( )。
合法代理行为的法律后果直接归属于()。
当代的机器人有一些严重的缺点,你认为下列几项中不成立的一项是()。
当x>0时,f(lnx)=,则xf’(x)dx为().
客户机/服务器(C/S)结构是一种基于【】的分布处理系统。
Theboardofthecompanyhasdecidedto______itsoperationtoincludeallaspectsoftheclothingbusiness.
SirMartinSorrell,thechiefexecutiveoftheadvertisingconglomerateWPP,wasatKensingtonWade,Britain’sfirstprimarysch
最新回复
(
0
)