首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有 ( )
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有 ( )
admin
2019-02-01
30
问题
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有 ( )
选项
A、|AB|=0
B、|BA|=0
C、|AB|=|BA|
D、||BA|BA|=|BA||BA|
答案
A
解析
由于m>n,则有r(AB)≤r(A)≤n<m,可知矩阵AB不满秩,因此(A)正确.由于BA是n阶矩阵,是否满秩无法确定,故不一定有|BA|=0,故(B)错误.
由于A,B不为方阵,因此没有等式|AB|=|A||B|=|BA|.事实上,由上面的讨论过程可知,当BA满秩时,有|AB|=0≠|BA|,故(C)不正确.
||BA|BA|=|BA|
n
|BA|=|BA|
n+1
,可知,等式||BA|BA|=|BA||BA|也不一定成立,故(D)错误.
综上,唯一正确的选项是(A).
转载请注明原文地址:https://jikaoti.com/ti/N2WRFFFM
0
考研数学二
相关试题推荐
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
A=,其中ai≠0,bi≠0,i=1,2,…,n,则r(A)=____________。
设n阶(n≥3)矩阵,A=,若矩阵A的秩为n—1,则a必为()
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4诹线性相关;(2)a为何值时,向量组α1,α2,α3,α4线
问λ为何值时,线性方程组有解,并求出解的一般形式.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设φ(x)是以2π为周期的连续函数,且Ф’(x)=φ(x),Ф(0)=0.(1)求方程y’+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
设f(x)在(-∞,+∞)有定义,f(x+y)=f(x)+f(y)+2xy,f’(0)=a,求f(x).
随机试题
按照网络分布和覆盖的地理范围,可将计算机网络分为()。
在半固体培养基内可出现倒伞形生长的是
患者,女,35岁。高处坠落,左枕着地,进行性意识障碍,1小时后右侧瞳孔散大。最有效的治疗方法是
条件特别适宜于PFI、PPP、BOT、及其他特许经营合同的项目合同是()。
根据我国心理学家冯忠良教授的学习分类,培养学生品德要通过()。
根据以下资料。回答下列题。2010年某省第一季度接待海外旅游者25.90万人次,同比增幅36.51%,旅游外汇收入9216.6万美元,同比增幅45.31%。其中台湾游客6.3万人次,占该省接待海外游客总数的24.28%,同比增幅58.45%,香港游客4.
2010年中共中央、国务院从党和国家工作全局出发,专门强调了农村发展的主题。这一主题是
下列选项中,哪些是按照文件的物理结构划分的文件分类?()
Thevisualartsareaclassofartforms,includingpainting,sculpture,photography,andothers,thatfocusonthecreationof
Dogswerefirstdomesticatedfromwolvesatleast17,000yearsago,butperhapsasearlyas150,000yearsagobaseduponrecent
最新回复
(
0
)