设f(x)在x=0点的某邻域内可导,且当x≠0时,f(x)≠0,已知f(x)=0,f’(0)=.

admin2018-06-14  41

问题 设f(x)在x=0点的某邻域内可导,且当x≠0时,f(x)≠0,已知f(x)=0,f’(0)=

选项

答案所求极限为1型,设法利用重要极限,并与导数f’(0)的定义相联系.由于 [*] 因此,由复合函数的极限运算性质,只需考虑极限 [*] 由于f(0)=0,f’(0)=[*]存在,故上述极限可利用极限的乘法运算求得,即有 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/MbIRFFFM
0

最新回复(0)