首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=4x22-3x32+2ax1x2-4x1x3+8x2x3(其中a为整数)经过正交变换化为标准形f=y12+6y22+by32,求: 正交变换矩阵Q。
设二次型f(x1,x2,x3)=4x22-3x32+2ax1x2-4x1x3+8x2x3(其中a为整数)经过正交变换化为标准形f=y12+6y22+by32,求: 正交变换矩阵Q。
admin
2019-12-24
31
问题
设二次型f(x
1
,x
2
,x
3
)=4x
2
2
-3x
3
2
+2ax
1
x
2
-4x
1
x
3
+8x
2
x
3
(其中a为整数)经过正交变换化为标准形f=y
1
2
+6y
2
2
+by
3
2
,求:
正交变换矩阵Q。
选项
答案
由上一题可知二次型矩阵A=[*]的特征值为λ
1
=1,λ
2
=6,λ
3
=-6。 当λ
1
=1时,根据(E-A)x=0得特征值λ
1
=1对应的特征向量为ξ
1
=[*] 当λ
2
=6时,根据(6E-A)x=0得特征值λ
2
=6对应的特征向量为ξ
2
=[*] 当λ
3
=-6时,根据(-6E-A)x=0得特征值λ
3
=-6对应的特征向量为ξ
3
=[*] 由于不同特征值所对应的特征向量必正交,故只需单位化即可。当ξ
1
,ξ
2
,ξ
3
单位化得γ
1
=[*],γ
2
=[*],γ
3
=[*],故正交变换矩阵为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/LqiRFFFM
0
考研数学三
相关试题推荐
设A=,则下列矩阵中与A合同但不相似的是()。
反常积分()。
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=-α1-3α2-3α3,Aα2=4α1+4α2+α3),Aα3=-2α1+3α3。(Ⅰ)求A的特征值;(Ⅱ)求A的特征向量;(Ⅲ)求A*-6E的秩。
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫-∞+∞g(x)dx,b=∫-∞+∞h(y)dy存在且不为零,则X与Y独立,其密度函数fX(x),fY(y)分别为
构造非齐次方程组,使得其通解为(1,0,0,1)T+c1(1,1,0,一1)T+c2(0,2,1,1)T,c1,c2任意.
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1,0)T,ξ3=(0,1,1,0)T是(I)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
已知ξ1=(1,1,一1,一1)T和ξ2=(1,0,一1,0)T是线性方程组的解,η=(2,一2,1,1)T是它的导出组的解,求方程组的通解.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
计算下列定积分:
设A,B是任意两个事件,则=_________
随机试题
联系实际论述理想信念在人生中的作用。
严重低渗性脱水时,首先输入
根据《建筑安装工程费用项目组成》(建标[2003]206号文),工程排污费属于建筑安装工程费中的()。【2010年考试真题】
下列厂房或仓库的火灾危险性,属于乙类的是()。
对企业的老供应商,要扩展新供货品种,企业对其评定内容应包括()等。
被专家称为“中国古代处理人与自然关系的典范”、“古文化生态的经典遗存”的是()。
为加快文件的传递,可采用()的方式。
一个部落或种族在历史的发展中灭绝了,但它的文字会流传下来。“亚里洛”就是这样一种文字。考古学家是在内陆发现这种文字的。经研究,“亚里洛”文字中没有表示“海”的文字,但有表示“冬天”“雪”和“狼”等的文字。因此,专家们推测,使用“亚里洛”文字的部落或种族在历
在面向对象方法中,类之间共享属性和操作的机制称为【】。
A、Wangjun’s.B、Liufeng’s.C、Lihong’s.D、Zhangjun’s.B
最新回复
(
0
)