首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求线性方程组的通解,并求满足条件x12=x22的所有解.
求线性方程组的通解,并求满足条件x12=x22的所有解.
admin
2019-08-12
82
问题
求线性方程组
的通解,并求满足条件x
1
2
=x
2
2
的所有解.
选项
答案
对增广矩阵作初等行变换,有 [*] 方程组的解:令x
3
=0,x
4
=0得x
2
=1,x
1
=2.即α=(2,1,0,0)
T
. 导出组的解: 令x
3
=1,x
4
=0得x
2
=3,x
1
=1.即η
1
=(1,3,1,0)
T
; 令x
3
=0,x
4
=1得x
2
=0,x
1
=1.即η
2
=(-1,0,0,1)
T
. 因此方程组的通解是:(2,1,0,0)v+k
1
(1,3,1,0)
T
+k
2
(-1,0,0,1)
T
. 而其中满足x
1
2
=x
2
2
的解,即(2+k
1
-k
2
)
2
=(1+3k
1
)
2
. 那么2+k
1
-k
2
=1+3k
1
或2+k
1
-k
2
=-(1+3k
1
), 即k
2
=1-2k
1
或k
2
=3+4k
1
. 所以(1,1,0,1)
T
+k(3,3,1,-2)
T
和(-1,1,0,3)
T
+k(-3,3,1,4)
T
为满足x
1
2
=x
2
2
的所有解.
解析
转载请注明原文地址:https://jikaoti.com/ti/L2ERFFFM
0
考研数学二
相关试题推荐
(17年)设f(x,y)具有一阶偏导数,且对任意的(x,y)都有则
设函数f(x)在[1,+∞]上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体的体积为V(t)=[t2f(t)一f(1)]试求y=f(x)所应满足的微分方程.并求该微分方程满足条件的解.
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有
设n维列向量组(Ⅰ):α1,…,αm(m<n)线性无关,则n维列向量组(Ⅱ):β1,…,βm线性无关的充分必要条件为
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.确定常数a,使得f(x)在x=0处连续;
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f"(ξ)=3.
以下三个命题:①若数列{un|收敛于A,则其任意子数列{uni}必定收敛于A;②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A;③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A.
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥)与x2+y2=1(y≤)连接而成。[img][/img]若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位为m,重力加速度为gm/s2,水的密度为1
设f(x)在(0,+∞)二阶可导,且满足f(0)=0,f’’(x)<0(x>0),又设b>a>0,则a<x<b时恒有()
求下列各题中平面图形的面积:(1)曲线y=a-x2(a>0)与x轴所围成的图形;(2)曲线y=x2+3在区间[0,1]上的曲边梯形;(3)曲线y=x2与y=2-x2所围成的图形;(4)曲线y=x2与直线x=0,y=1所围成的图形;(5)在区间[0
随机试题
设f’’(x)=arcsin(1-x),且f(0)=0,则∫01f(x)dx=_________.
X线照射生物体到发生生物学阶段的变化时间是
环境影响预测的方法中,定量化程度高、再现性好的方法是()。
发明专利权的期限为自申请日起()年。
会计人员整天和钱打交道,经常会受到钱财的诱惑,没有“理万金分文不沾”的道德品质和高尚情操是不行的。它体现了会计人员必须具有()的职业道德。
跨国中央银行制度是指两个或两个以上的国家设立共同的中央银行。通常是由参加某一货币联盟的国家共同设立。在全球影响最为深远的是1998年7月成立的欧洲中央银行,以下不属于欧洲中央银行的基本任务的是( )。
企业供应物流是从外界()启动企业物流过程。
A.sponsoringbookdiscussionclubsB.howtheycanbestadaptC.shortattentionspansD.accomplishmentsareadmiredPhrases:
有一个域名解析方式,它要求名字服务器系统一次性完成全部名字—地址变换,这种解析方式叫做【 】。
PerhapslikemostAmericansyouhavesomeextrapoundsto【S1】______.Youmayevenhavetriedafaddietortwo,butfoundyour
最新回复
(
0
)