首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在上半平面求一条凹曲线(图6.2),使其上任一点P(x,y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
在上半平面求一条凹曲线(图6.2),使其上任一点P(x,y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
admin
2018-06-27
76
问题
在上半平面求一条凹曲线(图6.2),使其上任一点P(x,y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
选项
答案
若将此曲线记为y=y(x),则依曲率计算公式,并注意曲线凹凸性的假设,即要求y’’≥0,故曲率 [*] 又由于过(x,f(x))点的法线方程为X-x+y’(x)[Y-y(x)]=0,它与x轴交点Q的横坐标X
0
=x+y’(x)y(x),所以,线段[*]的长度为 [*] 这样,由题设该曲线所满足的微分方程及初始条件为 [*] y(1)=1,y’(1)=0. 解二阶方程的初值问题[*]得 y=[*](e
x-1
+e
1-x
).
解析
转载请注明原文地址:https://jikaoti.com/ti/KjdRFFFM
0
考研数学二
相关试题推荐
设3阶矩阵A满足Aαi=iαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T,试求矩阵A.
已知齐次线性方程组其中.试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
对于线性方程组讨论λ为何值时,方程组无解、有唯一解和有无穷多组解.在方程组有无穷多组解时,试用其导出组的基础解系表示全部解.
设曲线l位于xOy平面的第一象限内,l上任一点M处的切线与Y轴总相交,交点记为A.已知,且l过点,求l的方程.
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)0(x∈(0,1));
已知矩阵若A+kE正定,求k的取值.
设xOy平面第一象限中有曲线F:y=y(x),过点y’(x)>0.M(x,y)为F上任意一点,满足:弧段的长度与点M处厂的切线在x轴上的截距之差为求曲线F的表达式.
曲线在其交点处的切线的夹角θ=_________.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
设f(t)连续并满足f(t)=cos2t+∫01(s)sinsds,求f(t).
随机试题
A.C00-C75B.C97C.D00-D09D.D10-D36E.D37-D48根据动态的肿瘤分组,独立的多个部位的(原发)恶性肿瘤编码为
有二型观测线的基牙上可以应用的卡环是
A.奎尼丁B.利多卡因C.胺碘酮D.氟卡尼E.阿托品属于Ic类药物()。
甲以20万元从乙公司购得某小区地下停车位。乙公司经规划部门批准在该小区以200万元建设观光电梯。该梯入梯口占用了甲的停车位,乙公司同意为甲置换更好的车位。甲则要求拆除电梯,并赔偿损失。下列哪些表述是错误的?
按CIF术语签订的合同,如卖方愿意承担卸货费,可以选用()。
证券公司只可委托其他证券公司或者商业银行代为推广集合资产管理计划,不可自行推广。( )
科目汇总表账务处理程序的优点是()。
政策法规知识是导游人员工作的指针。()
实行对偶婚是氏族产生的前提。( )
在__________人和__________人的装饰品上,呈现出成熟的钻孔技术,这在雕刻史上具有重要意义。
最新回复
(
0
)