首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1]有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1]有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)
admin
2022-09-05
33
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1]有
∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)
选项
答案
证法一 设F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(x)g’(x)dx-f(x)g(1),x∈[0,1] 则F(x)在[0,1]上的导数连续性,并且 F’(x)=g(x)f’(x)-f’(x)g(1)=f’(x)[g(x)-g(1)], 由于X∈[0,1]时,f(x)≥0, g’(x)≥0,因此F’(x)≤0,即F(x)在[0.1]上单调递减. 注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt-f(1)g(1) 而∫
0
1
g(t)f’(t)dt=∫
0
1
g(t)df(t)=g(t)f(t)|
0
1
-∫
0
1
f(t)g’(t)dt =f(1)g(1)-∫
0
1
f(t)g’(t)dt 故F(1)=0 因此x∈[0,1]时,F(x)≥0由此可得对任何a∈[0,1]时有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1) 证法二 ∫
0
a
g(x)f’(x)dx=g(x)f(x)|
0
a
-∫
0
a
f(x)g’(x)dx =f(a)g(a)-∫
0
a
f(x)g’(x)dx ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx=f(a)g(a)-∫
0
a
f(x)g’(x)dx+∫
0
1
f(x)g’(x)dx =f(a)g(a)+∫
a
1
f(x)g’(x)dx 由于x∈[0,1]时,f’(x)≥0,因此f(x)在[0,1]内单调递增 f(x)≥f(a),x∈[a,1] 又由于x∈[0,1]时,g’(x)≥0因此 f(x)g’(x)≥f(a)g’(x),x∈[a,1] ∫
a
1
f(x)g’(x)dx≥∫
a
1
f(a)g’(x)dx=f(a)[g(1)-g(a)] 从而∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(a)+f(a)[g(1)-g(a)]=f(a)g(1)
解析
转载请注明原文地址:https://jikaoti.com/ti/KPfRFFFM
0
考研数学三
相关试题推荐
设半径为R的球面S的球心在定球面x2+y2+z2=a2(a>0)上,问R取何值时,球面S在定球面内的面积最大?
设f(x,y)=且D={(x,y)|x2+y2≥2x},求f(x,y)dxdy.
计算(x2+y2)dxdy,其中D={(x,y)|x2+y2≤4,x2+y2≥2x}.
计算二重积分I=
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明:存在C∈(a,b),使得f(c)=0;
确定常数a,b,c,使得=c.
已知=-,求a,b的值.
将二重积分改写成直角坐标形式为()
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得成立.
随机试题
孔子据以主张“父子相隐”的周礼原则是
消化道不包括()
破伤风抗毒素(TAT)治疗破伤风的机制是
有关视网膜神经上皮层的描述,正确的是
A.回盲部切除术B.右半结肠切除术C.左半横结肠、降结肠和部分乙状结肠切除术D.左半横结肠、降结肠、乙状结肠和其系膜及淋巴结切除术E.乙状结肠部分切除术盲肠癌的手术方式
在行政诉讼中,下列哪一法律行为不属于受案范围内的行政许可案件?
下列固定资产折旧的表述错误的是()。
技术分析的缺点是( )。
健全的风险管理体系具有的功能不包括()。
简述香港特别行政区的区旗的含义。
最新回复
(
0
)