f(x)=∫01一cosxsirit2dt,当x→0时,f(x)是x的n阶无穷小,则n=________.

admin2016-12-16  58

问题 f(x)=∫01一cosxsirit2dt,当x→0时,f(x)是x的n阶无穷小,则n=________.

选项

答案6.

解析 可用下述结论观察求出,也可利用n阶无穷小定义求出.当f(x)连续且x→a时,f(x)是x→a的n阶无穷小量,g(x)是x→a的m阶无穷小量,则当x→a时,∫axf(t)出必为x一a的n+1阶无穷小量,∫ag(x)f(t)出必为x一a的(n+1)m阶无穷小量.因sinx2是x→0=x的2阶无穷小量,1一cosx~x2/2为x的2阶无穷小量,则x→0时,∫01一cosxsint2dt为x的(2+1)×2=6阶无穷小量,即n=6.
转载请注明原文地址:https://jikaoti.com/ti/K5SRFFFM
0

随机试题
最新回复(0)