首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明 存在ξ≠η∈(0,1),使得。
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明 存在ξ≠η∈(0,1),使得。
admin
2015-11-16
32
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明
存在ξ≠η∈(0,1),使得
。
选项
答案
在[0,c]及[c,1]上对f(x)分别使用拉格朗日中值定理得到:存在ξ∈(0,c),η∈(c,1),使得 [*] 于是[*]=2c+2(1-c)=2,得证。
解析
注意 上面利用(1)的结论证明了(2)的结论,但(1)的结论也可由(2)的结论推出。
事实上,由
得到 2f
2
(c)-2cf(c)-f(c)+c
=f(c)[2f(c)-1]-c[2f(c)-1]
=[f(c)-c][2f(c)-1]=0。
因f(x)不一定满足f(x)=x,故有2f(c)-1=0,即f(c)=1/2。
转载请注明原文地址:https://jikaoti.com/ti/JxPRFFFM
0
考研数学一
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ε,η∈(0,1),使得.
设A=(1)证明当n>1时An=An-2+A2-E.(2)求An.
设函数y=y(x)满足微分方程y"-3y’+2y=2ex,且其图形在点(0,1)处的切线与曲线y=x2一x+1在该点的切线重合,求y=y(x)的表达式.
设f(x)=处处可导,确定常数a,b,并求f’(x).
用导数定义证明:可导的偶函数的导函数是奇函数,而可导的奇函数的导函数是偶函数.
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点.若极径OM0,OM与曲线L所围成的曲边扇形的面积值等于L上M0,M两点间弧长值的一半,求曲线L的极坐标方程.
设L:y=e-x(x≥0).求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴旋转一周而得的旋转体的体积V(a);
箱内有6个球,其中红、白、黑球的个数分别为1,2,3个,现从箱中随机的取出2个球,记X为取出的红球个数,Y为取出的白球个数.求随机变量(X,Y)的概率分布;
设f(x)是连续函数。求初值问题的解,其中a>0.
下列结论正确的是().
随机试题
拆除混凝土围堰一般可运用().
氨苄青霉素先锋霉素Ⅳ
《联合国国际货物买卖合同公约》不适用于哪些买卖?()
分项工程应按主要()等进行划分。
下列关于业主对工程项目管理的表述中,正确的是()
与公司类贷款比较,低资本消耗是个人贷款最明显的特征。()
中国共产党()于2017年10月18日在北京召开。
管理学家对个体行为做出几种不同的假设,传统的人性假设、()。
第一次工业革命期间,英国人______制成改良蒸汽机;______制成蒸汽机车。
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe20thcenturyandthediffusionofprintinginthe15thand1
最新回复
(
0
)