首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t的值是__________。
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t的值是__________。
admin
2019-01-19
45
问题
如果β=(1,2,t)
T
可以由α
1
=(2,1,1)
T
,α
2
=(一1,2,7)
T
,α
3
=(1,一1,一4)
T
线性表示,则t的值是__________。
选项
答案
5
解析
β可以由向量组α
1
,α
2
,α
3
线性表示的充分必要条件是非齐次线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有解,对该方程组的增广矩阵作初等行变换得
而方程组有解的充分必要条件是系数矩阵与增广矩阵有相同的秩,因此t一5=0,即t=5。
转载请注明原文地址:https://jikaoti.com/ti/JrBRFFFM
0
考研数学三
相关试题推荐
(04年)设总体X服从正态分布N(μ1,σ2),总体Y服从正态分布N(μ2,σ2),X1,X2,…,和Y1,Y2,…,分别是来自总体X和Y的简单随机样本,则_______.
(03年)设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=依概率收敛于_______.
(07年)设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fx(χ),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX|Y(χ|y)为【】
(00年)设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Aχ=0和(Ⅱ):ATAχ=0,必有【】
(87年)已知随机变量X的概率密度为求随机变量Y=的数学期望E(Y).
(88年)已给线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解.
(12年)设A为3阶矩阵,P为3阶可逆矩阵,且P-1AP=.若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=【】
(09年)设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ为【】
现有K个人在某大楼的一层进人电梯,该楼共n+1层.电梯在任一层时若无人下电梯则电梯不停(以后均无人再入电梯).现已知每个人在任何一层(当然不包括第一层)下电梯是等可能的且相互独立,求电梯停止次数的平均值.
已知3阶方阵A的行列式|A|=2,方阵B=其中Aij为A的(i,j)元素的代数余子式,求AB.
随机试题
Anewstudyshowsthatregularlyeatingfastfoodisn’tjustbadforyourwaistline,itcanalsodamageyourliverinwaysthat
男性,65岁,诉尿频、尿急及排尿困难已5年,近半年来多次因尿潴留急诊导尿,查体:下腹稍胀,排尿后测残余尿500ml,直肠指诊前列腺表面光滑,中间沟消失。PSA4ng/ml,此病人的诊断是
A渗滤法B冷浸法C回流法D连续回流提取法E水蒸气蒸馏法有机溶剂用量少而提取效率高的提取方法
散剂的制备工艺流程一般是
用于治疗肝火上炎,目赤肿痛的方剂是()
关于磷酸戊糖途径的叙述,正确的是
皮影戏起源很早,大约始于宋代,兴盛于明清。()
根据以下情境材料,回答下列问题。2018年6月18日,甲地公安机关接到群众报警,称某小卖部失火。公安机关赶到现场后,经勘查发现仰卧状尸体一具,身上有明显伤痕,颈部有一处刀伤,现场有汽油味,收银柜台完好。经查小卖部电线老化,尸检报告显示死者为小卖部主人赵某
甲与乙订立货物买卖合同,约定甲于1月8日交货,乙在交货期后的一周内付款。交货期届满时,甲发现乙有转移资产以逃避债务的行为。对此甲可依法行使()。
窗体上有一个Text1文本框,一个Command1命令按钮,并有以下程序:PrivateSubCommand1_click()DimnIfllextl.Text”123456”Thenn=n+1:Print”口令输入错误”&n&”次”
最新回复
(
0
)