首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3维向量组α1,α2线性无关,β1,β2线性无关. 证明:存在非零3维向量ξ1,ξ2既可由α1,α2线性表出,也可由β1,β2线性表出;
设3维向量组α1,α2线性无关,β1,β2线性无关. 证明:存在非零3维向量ξ1,ξ2既可由α1,α2线性表出,也可由β1,β2线性表出;
admin
2014-04-16
35
问题
设3维向量组α
1
,α
2
线性无关,β
1
,β
2
线性无关.
证明:存在非零3维向量ξ
1
,ξ
2
既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出;
选项
答案
α
1
,α
2
,β
1
,β
2
均是3维向量,4个3维向量必线性相关,由定义,存在不全为零的数k
1
,k
2
,λ
1
,λ
2
.使得k
1
α
1
+k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0,得k
1
α
1
+k
2
α
2
+k
1
β
1
-λ
2
β
2
.取ξ=k
1
α
1
+k
2
α
2
=一λ
1
β
1
—λ
2
β
2
,若ξ=0.则k
1
α
1
+k
2
α
2
=-λ
1
β
1
-λ
2
β
2
=0.因α
1
,α
2
线性无关,β
1
,β
2
也线性无关,从而得出λ
1
=λ
2
=0,且λ
1
=λ
2
=0。这和4个3维向量线性相关矛盾,故ξ≠0,ξ即为所求的既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出的非零向量
解析
转载请注明原文地址:https://jikaoti.com/ti/JSDRFFFM
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2,其中P=(e1,e2,e3).若Q=(e1,一e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
A、 B、 C、 D、 C
(2016年)已知函数f(x,y)=则()
(14年)设函数f(χ)具有2阶导数,g(χ)=f(0)(1-χ)+f(1)χ,则在区间[0,1]上【】
设A为3阶矩阵,α1,α2,α3为线性无关的向量组,若Aα1=α1+α2,Aα2=α2+α3,Aα3=α1+α3,则|A|=________.
微分方程:xy’=+y的通解为________。
方程2xydx-(1+x2)dy=0的满足y(0)=1特解为___________.
设A=,问a,x为何值时,A相似于对角矩阵,a,x为何值时,A不能相似于对角矩阵,说明理由。
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设f(x)在(0,+∞)内可导,下述论断正确的是()
随机试题
由于竞争品牌的冲击,造成“何采”洗护产品的销量呈现明显的下滑趋势。加之竞争对手产品的市场冲击,使“何采”的终端销量不断地遭到蚕食和影响。为此,“何采”发起了一轮促销推广活动。(1)买赠形式:以“空盒兑换+免费体验试用+积分兑换”为主线,在促销期内,凡集齐
对于人体静脉血压的描述,不正确的是
关于肺结核化学治疗,以下错误是
施工合同履行过程中发包人要求变更工程质量标准及其他实质性变更,应由( )。
科学发展观的出发点和落脚点是()。
材料1 王安石曾用“西风昨夜过园林,吹落黄花满地金”的诗句题咏秋菊。苏东坡则认为秋菊不可能像春花那样落英满地,以“秋菊不比春花落,说与诗人仔细吟”的诗句加以嘲讽。后来,苏东坡在黄州果真见到了秋菊落花,才知道自己错了。 材料2 法国著名文学家莫泊
设G={(x,y)|0≤x≤3,0≤y≤1}是一矩形,向矩形G上均匀地掷一随机点(X,Y),则点(X,Y)落到圆x2+y2≤4上的概率为_________.
如果输入掩码设置为“C”,则在输入数据的时候,该位置上可以接受的合法输入是()。
Socialdistancemayaffect/howopenlyemployeesspeakabouttheirwork.Peopleofthesamerank/maytalkfranklytooneanot
5WaystoJustEnjoyRetirement1.Thepurposeofthisspeech■Tohelpretireesfind【T1】______inretirement【T1】_
最新回复
(
0
)