首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
admin
2018-07-31
31
问题
设A=(a
ij
)是3阶非零矩阵,|A|为A的行列式,A
ij
为a
ij
的代数余子式.若a
ij
+A
ij
=0(i,j=1,2,3),则|A|=________.
选项
答案
一1.
解析
由A≠O,不妨设a
11
≠0,由已知的A
ij
=一a
ij
(i,j=1,2,3),得
|A|一
a
1j
2
≠0,
及A=一(A
*
)
T
.其中A
*
为A的伴随矩阵.以下有两种方法:
方法1 用A
T
右乘A=一(A
*
)
T
的两端.得
AA
T
=一(A
*
)AT=一(AA
*
)
T
=一(|A|I)
T
,
其中I为3阶单位矩阵,上式两端取行列式,得
|A|
2
=(一1)
3
=|A|
3
,或|A|
2
(1+|A|)=0.
因|A|≠0,所以|A|=一1.
方法2 从A=一(A
*
)
T
两端取行列式,并利用|A
*
|=|A|
2
.得
|A|=(一1)
3
|A
*
|=一|A|
2
,或|A|(1+|A|)=0,
因|A|≠0,所以|A|=一1.
转载请注明原文地址:https://jikaoti.com/ti/JP2RFFFM
0
考研数学一
相关试题推荐
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设A=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设点M1(1,一1,一2),M2(1,0,3),M3(2,1,2),则点M3到向量的距离为___________.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=___________.
设A是n阶方阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
设方阵A1与B1合同,A2与B2合同,证明:合同。
随机试题
中央旁小叶
【2011年第11题】下列图3-256所示结构属于何种体系?
2007年7月,农村信用社改革试点的大幕最先在()拉开。
劳务派遣单位的注册资本不得低于()万元。
髋关节按形状属于_______关节;按运动轴的数目属于_______关节。
认为“领导是影响和支持其他人为了达到目标而富有热情地工作的过程”的是()。
A、 B、 C、 D、 B观察第一套图可发现:第一个图形轮廓为上小下大,第二个图形的轮廓为上下对称,第三个图形轮廓为上大下小。依据此规律可推出答案为B。
有网友发帖称,8月28日从湖北襄樊到陕西安康的某次列车,其有效座位为978个,实际售票数却高达3633张。铁道部要求,普快列车超员率不得超过50%,这次列车却超过了370%,属于严重超员。如果以下陈述为真,哪一项对该网友的论断构成严重质疑?()
Ladiesandgentleman,It’sagreatpleasuretohaveyouvisitustoday.I’mveryhappytohavetheopportunityto【11】______o
Bookshaven’tchangedmuchsinceJohannGuttenburginventedtheprintingpressinthefifteenthcentury.Themethodsforproduci
最新回复
(
0
)