首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1=[1,2,-2]T, α2=[2,1,-1]T, α3=[1,1,t]T是线性非齐次方程组AX=b的解向量,其中b=[1,3,一2]T,则( ).
设A是三阶矩阵,α1=[1,2,-2]T, α2=[2,1,-1]T, α3=[1,1,t]T是线性非齐次方程组AX=b的解向量,其中b=[1,3,一2]T,则( ).
admin
2016-11-03
27
问题
设A是三阶矩阵,α
1
=[1,2,-2]
T
, α
2
=[2,1,-1]
T
, α
3
=[1,1,t]
T
是线性非齐次方程组AX=b的解向量,其中b=[1,3,一2]
T
,则( ).
选项
A、t=-1,必有r(A)=1
B、t=-1,必有r(A)=2
C、t≠-1,必有r(A)=1
D、t≠-1,必有r(A)=2
答案
C
解析
令B=[α
1
,α
2
,α
3
],则
AB=[b,b,b], r(AB)=r([b,b,b])=1.
注意到t≠一1时,r(B)=3,从而r(AB)=r(A)=1,也可由方程组AX=b解的结构原理直接推出r(A)=1. ‘
将已知关系式Aα
i
=b(i=1,2,3)合并成一个矩阵等式:
A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
]=[b,b,b]=
令 B=[α
1
,α
2
,α
3
]=
则 AB=[b,b,b].
当t=-1时,因B中第2,3行成比例,故r(B)=2.这时由r(AB)=1只能得到r(A)≥r(AB)=1.(A)、(B)都不对,
当t≠一1时,因r(B)=3,故r(AB)=r(A)=1.仅(C)入选.
转载请注明原文地址:https://jikaoti.com/ti/JKwRFFFM
0
考研数学一
相关试题推荐
[*]
在某公共汽车站甲、乙、丙三人分别等1,2,3路公共汽车.设每个人等车时间(单位:min)均服从[0,5]上的均匀分布,求三人中至少有两人等车时间不超过2min的概率.
求下列有理函数不定积分:
下列各对函数中,两函数相同的是[].
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.求收到字符ABCA的概率;
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布N(a,0.22),若以n表示n次称量结果的算术平均值,则为使P{|X ̄-a|<0.1}≥0.95,n的最小值应小于自然数_________.
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设A=E一ααT,其中α为n维非零列向量.证明:A2=A的充分必要条件是α为单位向量;
随机试题
简述20世纪初资产阶级民主革命思想的主要内容。(武汉大学2001年中国近现代史真题)
“一国两制”不符合马克思主义国家学说,会改变我国社会主义的主体地位。
不符合肿瘤代谢特点的是
患者症见往来寒热,胸胁苦满,心烦喜呕,脘腹满痛,大便不解。治宜选用()
下列有关高血压病的并发症,下列哪项不正确
患者女,30岁。妊娠8周需终止妊娠,应选用的方法是
生产工艺技术方案比选时,若产出相同、收益相同,则可以只考虑()的比选。
外国投资者甲、乙、丙、丁分别拟对我国A股上市公司进行战略投资。其中:甲境外实有资产总额为8000万美元,乙管理的境外实有资产总额为3亿美元,丙的母公司境外实有资产总额为2亿美元,丁的母公司管理的境外实有资产总额为4亿美元。根据外国投资者对上市公司战略投资管
以下各项中,不属于金融市场配置职能体现的是()。
语言符号的线条性
最新回复
(
0
)