首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列曲面积分: (Ⅰ)I=xyzdxdy+xzdydz+z2dzdx,其中∑是x2+z2=a2在x≥0的一半中被y=0和y=h(h>0)所截下部分的外侧(见图9.60); (Ⅱ)I=xy dzdx,其中s是由曲线x=(0≤y≤a)绕x轴旋
求下列曲面积分: (Ⅰ)I=xyzdxdy+xzdydz+z2dzdx,其中∑是x2+z2=a2在x≥0的一半中被y=0和y=h(h>0)所截下部分的外侧(见图9.60); (Ⅱ)I=xy dzdx,其中s是由曲线x=(0≤y≤a)绕x轴旋
admin
2018-11-21
34
问题
求下列曲面积分:
(Ⅰ)I=
xyzdxdy+xzdydz+z
2
dzdx,其中∑是x
2
+z
2
=a
2
在x≥0的一半中被y=0和y=h(h>0)所截下部分的外侧(见图9.60);
(Ⅱ)I=
xy dzdx,其中s是由曲线x=
(0≤y≤a)绕x轴旋转成的旋转面,取外侧.
选项
答案
(Ⅰ)本题实际上可以分三个积分计算,即I=I
1
+I
2
+I
3
. 将∑在yz平面上的投影记为D
yz
,则D
yz
:0≤y≤h,一a≤z≤a.注意到∑的法线方向与x轴正方向夹锐角,则 I
2
=[*]. 此时已化成了二重积分,注意到D
yz
关于y轴对称,而被积函数为z的奇函数,故I
2
=0. 由于∑垂直于zx平面(它在zx平面上的投影域面积为零),故I
3
=[*]z
2
dzdx=0,而 [*] 所以, I=I
1
+I
2
+I
3
=[*]h
2
a
3
. (Ⅱ)曲面S的方程是:x=[*](y
2
+z
2
≤a
2
),见图9.61.S在yz平面上的投影区域Dw易求, D:y
2
+z
2
≤a
2
,x=0,又[*], S的法向量与x轴正向成钝角,于是 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/J72RFFFM
0
考研数学一
相关试题推荐
求微分方程x(y2-1)dx+y(x2-1)dy=0的通解.
设方程组(Ⅰ)与方程组(Ⅱ)x1+2x2+x3=a一1有公共解,求a的值及所有公共解.
设X和Y为独立的随机变量,X在区间[0,1]上服从均匀分布,Y的概率密度函数为求随机变量Z=X+Y的分布函数Fz(z).
曲线y=有()渐近线.
向量v=xi+yi+zk穿过封闭圆锥曲面z2=x2+y2,0≤z≤h的流量等于___________.
原点O(0,0,0)到直线的距离d=__________.
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零
求不定积分
设对于半空间x>0内任意的光滑有向封闭曲面∑,都有xf(x)dydz-xyf(x)dzdx-e2xzdxdy=0,其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x)。
随机地向圆x2+y2=2x内投一点,该点落在任何区域内的概率与该区域的面积成正比,令X表示该点与原点的连线与x轴正半轴的夹角,求X的分布函数和概率密度。
随机试题
現在の我々は、マスメディア無しに自分の意見を決められません。それどころか、進学、就職、結婚、娯楽、これらの判断基準を全てマスメディアに頼って暮らしています。これらの問題を自分一人で考え、結論づけられる人なんて、ほとんどいません。もちろん、「私は情
白居易《长恨歌》:骊宫高处入青云,__________。
课程内容的具体表现形式由_______、_______和教材(或称教科书)等三部分组成。
生产性生物资产的评估方法有关市场法的评估公式V=K×Kp×P×M,下列选项中,说法不正确的()。
根据《公开发行证券的公司信息披露内容与格式准则第1号--招股说明书》的规定,招股说明书应满足的一般要求包括()。
目前在我国A股账户可用于买卖()。Ⅰ.A股Ⅱ.B股Ⅲ.债券Ⅳ.权证
以依法可以转让的股票出质的,出质人与质权人应当订立书面合同,并向证券登记机构办理出质登记。质押合同自()起生效。
追求与放弃都是正常的生活态度,有所追求就应有所放弃。有价值的人生,需要开拓进取、成就事业,但更要懂得正确和必要的放弃——这不是一种_________,而是一种_________。填入划横线部分最恰当的一项是:
Inthefollowingtext,somesentenceshavebeenremoved.ForQuestions41-45,choosethemostsuitableonefromthelistA-Gto
Thehealthyadolescentboyorgirllikestodotherealthingsinlife,todothethingsthatmatter.Hewouldratherbeaplumb
最新回复
(
0
)